用户工具

站点工具


en:tools:gibbstopicmodels

差别

这里会显示出您选择的修订版和当前版本之间的差别。

到此差别页面的链接

后一修订版
前一修订版
en:tools:gibbstopicmodels [2017/04/20 13:44]
pzczxs 创建
— (当前版本)
行 1: 行 1:
-=====Topic Models(Gibbs Sampling)===== 
-====Introduction==== 
-Topic model is family of generative probabilistic models for discovering the main themes from a collection of documents. For more elaborate and detailed surveys, we refer the readers to [1]. Examples of topic models include Latent Dirichlet Allocation (LDA) [2][3][4], Author-Topic (AT) model [5][6][7], and co-Author-Topic (coAT) model [8], and many others. 
  
-The inference for topic models usually cannot be done exactly. A variety of approximate inference algorithms have appeared in recent years, such as stochastic variational inference, mean-field variational methods, expectation propagation,​ and Monte Carlo Markov chain sampling (MCMC). In this toolbox, Gibbs sampling, a special case of MCMC, is utilized, since it provides a simple method for obtaining parameter estimates under Dirichlet priors and allows combination of estimates from several local maxima of the posterior distribution. 
- 
-====Programming Language==== 
-JAVA 
- 
-====Source Codes==== 
-https://​github.com/​pzczxs/​GibbsTopicModels 
- 
-====Additional Information==== 
-If you find this toolbox useful, please cite GibbsTopicModels as follows: 
-  *Xin An, Shuo Xu, Yali Wen, and Mingxing Hu, 2014. [[http://​dx.doi.org/​10.1155/​2014/​820715|A Shared Interest Discovery Model for Co-author Relationship in SNS]]. //​International Journal of Distributed Sensor Networks//, Vol. 2014, pp. 1-9. ''​{{xushuo:​papers:​axwh14.pdf|PDF}}''​ 
- 
-====References==== 
- 
-~~DISCUSSION~~ 
en/tools/gibbstopicmodels.1492667055.txt.gz · 最后更改: 2017/04/20 13:44 由 pzczxs