用户工具

站点工具


en:tools:gibbstopicmodels

差别

这里会显示出您选择的修订版和当前版本之间的差别。

到此差别页面的链接

两侧同时换到之前的修订记录 前一修订版
后一修订版
前一修订版
en:tools:gibbstopicmodels [2017/04/21 23:37]
pzczxs [Citation Information]
— (当前版本)
行 1: 行 1:
-=====Topic Models(Gibbs Sampling)===== 
-====Introduction==== 
-Topic model is family of generative probabilistic models for discovering the main themes from a collection of documents. For more elaborate and detailed surveys, we refer the readers to [1]. Examples of topic models include Latent Dirichlet Allocation (LDA) [2][3][4], Author-Topic (AT) model [5][6][7], and co-Author-Topic (coAT) model [8], and many others. 
  
-The inference for topic models usually cannot be done exactly. A variety of approximate inference algorithms have appeared in recent years, such as stochastic variational inference, mean-field variational methods, expectation propagation,​ and Monte Carlo Markov chain sampling (MCMC). In this toolbox, Gibbs sampling, a special case of MCMC, is utilized, since it provides a simple method for obtaining parameter estimates under Dirichlet priors and allows combination of estimates from several local maxima of the posterior distribution. 
- 
-====Programming Language==== 
-JAVA 
- 
-====Source Codes==== 
-https://​github.com/​pzczxs/​GibbsTopicModels 
- 
-====Citation Information==== 
-If you find this toolbox useful, please cite GibbsTopicModels as follows: 
-  *Xin An, Shuo Xu, Yali Wen, and Mingxing Hu, 2014. [[http://​dx.doi.org/​10.1155/​2014/​820715|A Shared Interest Discovery Model for Coauthor Relationship in SNS]]. //​International Journal of Distributed Sensor Networks//, Vol. 2014, No. 820715, pp. 1-9. ''​{{xushuo:​papers:​axwh14.pdf|PDF}}''​ 
- 
-====References==== 
-  -David M. Blei, 2012. [[http://​dx.doi.org/​10.1145/​2133806.2133826|Introduction to Probabilistic Topic Models]]. //​Communications of the ACM//, Vol. 55, No. 4, pp. 77-84. 
-  -David M. Blei, Andrew Y. Ng, and Michael I. Jordan, 2003. [[http://​jmlr.csail.mit.edu/​papers/​v3/​blei03a.html|Latent Dirichlet Allocation]]. //Journal of Machine Learning Research//, Vol. 3, No. Jan, pp. 993-1022. 
-  -Thomas L. Griffiths and Mark Steyvers, 2004. [[http://​www.pnas.org/​content/​101/​suppl_1/​5228.abstract|Finding Scientific Topics]]. //​Proceedings of the National Academy of Sciences of the United States of America//, Vol. 101, No. Suppl, pp. 5228-5235. 
-  -Gregor Heinrich, 2009. [Parameter Estimation for Text Analysis](http://​www.arbylon.net/​publications/​text-est2.pdf). *Technical Report Version 2.9*. vsonix GmbH and University of Leipzig. ​ 
-  -Michal Rosen-Zvi, Thomas Griffiths, Mark Steyvers, and Padhraic Smyth, 2004. [[https://​mimno.infosci.cornell.edu/​info6150/​readings/​398.pdf|The Author-Topic Model for Authors and Documents]]. *Proceedings of the 20th International Conference on Uncertainty in Artificial Intelligence*,​ pp. 487-494. 
-  -Mark Steyvers, Padhraic Smyth, and Thomas Griffiths, 2004. [[http://​psiexp.ss.uci.edu/​research/​papers/​author_topics_kdd.pdf|Probabilistic Author-Topic Models for Information Discovery]]. *Proceedings of the 10th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining*, pp. 306-315. ​ 
-  -Michal Rosen-Zvi, Chaitanya Chemudugunta,​ Thomas Griffiths, and Padhraic Smyth, and Mark Steyvers, 2010. [[https://​cocosci.berkeley.edu/​tom/​papers/​AT_tois.pdf|Learning Author-Topic Models from Text Corpora]]. *ACM Transactions on Information Systems*, Vol. 28, No. 1, pp. 1-38.  
-  -Xin An, Shuo Xu, Yali Wen, and Mingxing Hu, 2014. [[http://​dx.doi.org/​10.1155/​2014/​820715|A Shared Interest Discovery Model for Coauthor Relationship in SNS]]. *International Journal of Distributed Sensor Networks*, Vol. 2014, No. 820715, pp. 1-9.  
- 
-~~DISCUSSION~~ 
en/tools/gibbstopicmodels.1492789058.txt.gz · 最后更改: 2017/04/21 23:37 由 pzczxs