用户工具

站点工具


en:tools:mlssvr

差别

这里会显示出您选择的修订版和当前版本之间的差别。

到此差别页面的链接

两侧同时换到之前的修订记录 前一修订版
en:tools:mlssvr [2017/04/20 14:08]
pzczxs
— (当前版本)
行 1: 行 1:
-=====Multi-output Least-Squares Support Vector Regression Machine (MLS-SVR)===== 
-====Introduction==== 
-Multi-output regression aims at learning a mapping from a multivariate input feature space to a multivariate output space. Despite its potential usefulness, the standard formulation of the least-squares support vector regression machine (LS-SVR) [1][2] cannot cope with the multi-output case. The usual procedure is to train multiple independent LS-SVR, thus disregarding the underlying (potentially nonlinear) cross relatedness among different outputs. 
  
-To address this problem, inspired by the multi-task learning methods (such as [3]), Xu et. al. [4] proprosed a novel approach, Multi-output LS-SVR (MLS-SVR), in multi-output setting. MLSSVR is a MATLAB implementation of MLS-SVR with the more efficient training algorithm in [4]. 
- 
-====Programming Language==== 
-MATLAB 
- 
-====Source Codes==== 
-https://​github.com/​pzczxs/​MLSSVR 
- 
-====Citation Information==== 
-If you find this toolbox useful, please cite MLS-SVR as follows: 
-  *Shuo Xu, Xin An, Xiaodong Qiao, Lijun Zhu, and Lin Li, 2013. [[http://​dx.doi.org/​10.1016/​j.patrec.2013.01.015|Multi-Output Least-Squares Support Vector Regression Machines]]. //Pattern Recognition Letters//, Vol. 34, No. 9, pp. 1078-1084. ''​{{xushuo:​papers:​mls-svm.pdf|PDF}}'' ​ 
- 
-====References==== 
-  -C. Saunders, A. Gammerman, and V. Vovk, 1998. Ridge Regression Learning Algorithm in Dual Variables. //​Proceedings of the 15th International Conference on Machine Learning (ICML)//, pp. 515-521. ​ 
-  -Johan A. K. Suyken, Tony van Gestel, ​ Jos de Brabanter, Bart de Moor, and Joos Vandewalle, 2002. Least-Squares Support Vector Machines. World Scientific Pub. Co. 
-  -Theodoros Evgeniou and Massimiliano Pontil, 2004. Regularized Multi-Task Learning. //​Proceedings of the 10th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining (KDD)//, pp. 109-117. ​ 
-  -Shuo Xu, Xin An, Xiaodong Qiao, Lijun Zhu, and Lin Li, 2013. [Multi-Output Least-Squares Support Vector Regression Machines](http://​doi.org/​10.1016/​j.patrec.2013.01.015). //Pattern Recognition Letters//, Vol. 34, No. 9, pp. 1078-1084. ​ 
- 
-~~DISCUSSION~~ 
en/tools/mlssvr.1492668512.txt.gz · 最后更改: 2017/04/20 14:08 由 pzczxs