用户工具

站点工具


zh:courses:ml2025:ch05

差别

这里会显示出您选择的修订版和当前版本之间的差别。

到此差别页面的链接

后一修订版
前一修订版
zh:courses:ml2025:ch05 [2025/12/17 22:10]
pzczxs 创建
zh:courses:ml2025:ch05 [2025/12/25 09:34] (当前版本)
pzczxs [推荐读物]
行 1: 行 1:
-====== 概率主题模型 ======+====== ​第五章:概率主题模型 ======
 ====课件==== ====课件====
-下载:概率主题模型【PDF,PPT】+下载:概率主题模型【{{ :​zh:​courses:​ml2025:​ch05.pdf |PDF}}{{ :​intranet:​courses:​ml2025:​ch05.pptx |PPT}}
  
 ====推荐读物==== ====推荐读物====
行 17: 行 17:
   -张晗, 徐硕, 乔晓东, 2014. [[http://​d.wanfangdata.com.cn/​Periodical_qbxb201410013.aspx|融合科技文献内外部特征的主题模型发展综述]]. //​情报学报//,​ Vol. 33, No. 10, pp. 1108-1120. ​   -张晗, 徐硕, 乔晓东, 2014. [[http://​d.wanfangdata.com.cn/​Periodical_qbxb201410013.aspx|融合科技文献内外部特征的主题模型发展综述]]. //​情报学报//,​ Vol. 33, No. 10, pp. 1108-1120. ​
   -Xuerui Wang, Andrew McCallum, and Xing Wei, 2007. [[https://​doi.org/​10.1109/​ICDM.2007.86|Topical N-grams: Phrase and Topic Discovery, with an Application to Information Retrieval]]. //ICDM//, 697-702.   -Xuerui Wang, Andrew McCallum, and Xing Wei, 2007. [[https://​doi.org/​10.1109/​ICDM.2007.86|Topical N-grams: Phrase and Topic Discovery, with an Application to Information Retrieval]]. //ICDM//, 697-702.
 +  -Rajarshi Das, Manzil Zaheer, and Chris Dyer, 2015. [[https://​doi.org/​10.3115/​v1/​P15-1077|Gaussian LDA for Topic Models with Word Embeddings]]. //​Proceedings of the 53rd Annual Meeting of the Association for Computational Linguistics and the 7th International Joint Conference on Natural Language Processing//,​ pp. 795-804.
   -Shuo Xu, Liyuan Hao, Guancan Yang, Kun Lu, and Xin An, 2021. [[https://​doi.org/​10.1016/​j.techfore.2020.120366|A Topic Models based Framework for Detecting and Forecasting Emerging Technologies]]. //​Technology Forecasting and Social Change//, Vol. 162, pp. 120366. [[:​zh:​notes:​techemergence|Note]]   -Shuo Xu, Liyuan Hao, Guancan Yang, Kun Lu, and Xin An, 2021. [[https://​doi.org/​10.1016/​j.techfore.2020.120366|A Topic Models based Framework for Detecting and Forecasting Emerging Technologies]]. //​Technology Forecasting and Social Change//, Vol. 162, pp. 120366. [[:​zh:​notes:​techemergence|Note]]
   -Zheng Wang, Shuo Xu, and Lijun Zhu, 2018. [[https://​doi.org/​10.1016/​j.jbi.2018.08.011|Semantic Relation Extraction Aware of N-Gram Features from Unstructured Biomedical Text]]. //Journal of Biomedical Informatics//,​ Vol. 86, pp. 59-70. [[:​zh:​notes:​rel_type_tng|Note]]   -Zheng Wang, Shuo Xu, and Lijun Zhu, 2018. [[https://​doi.org/​10.1016/​j.jbi.2018.08.011|Semantic Relation Extraction Aware of N-Gram Features from Unstructured Biomedical Text]]. //Journal of Biomedical Informatics//,​ Vol. 86, pp. 59-70. [[:​zh:​notes:​rel_type_tng|Note]]
zh/courses/ml2025/ch05.1765980602.txt.gz · 最后更改: 2025/12/17 22:10 由 pzczxs