这里会显示出您选择的修订版和当前版本之间的差别。
| 两侧同时换到之前的修订记录 前一修订版 后一修订版 | 前一修订版 | ||
|
zh:courses:ml2025:ch05 [2025/12/24 22:22] pzczxs [推荐读物] |
zh:courses:ml2025:ch05 [2025/12/25 09:34] (当前版本) pzczxs [推荐读物] |
||
|---|---|---|---|
| 行 1: | 行 1: | ||
| - | ====== 概率主题模型 ====== | + | ====== 第五章:概率主题模型 ====== |
| ====课件==== | ====课件==== | ||
| 下载:概率主题模型【{{ :zh:courses:ml2025:ch05.pdf |PDF}},{{ :intranet:courses:ml2025:ch05.pptx |PPT}}】 | 下载:概率主题模型【{{ :zh:courses:ml2025:ch05.pdf |PDF}},{{ :intranet:courses:ml2025:ch05.pptx |PPT}}】 | ||
| 行 17: | 行 17: | ||
| -张晗, 徐硕, 乔晓东, 2014. [[http://d.wanfangdata.com.cn/Periodical_qbxb201410013.aspx|融合科技文献内外部特征的主题模型发展综述]]. //情报学报//, Vol. 33, No. 10, pp. 1108-1120. | -张晗, 徐硕, 乔晓东, 2014. [[http://d.wanfangdata.com.cn/Periodical_qbxb201410013.aspx|融合科技文献内外部特征的主题模型发展综述]]. //情报学报//, Vol. 33, No. 10, pp. 1108-1120. | ||
| -Xuerui Wang, Andrew McCallum, and Xing Wei, 2007. [[https://doi.org/10.1109/ICDM.2007.86|Topical N-grams: Phrase and Topic Discovery, with an Application to Information Retrieval]]. //ICDM//, 697-702. | -Xuerui Wang, Andrew McCallum, and Xing Wei, 2007. [[https://doi.org/10.1109/ICDM.2007.86|Topical N-grams: Phrase and Topic Discovery, with an Application to Information Retrieval]]. //ICDM//, 697-702. | ||
| + | -Rajarshi Das, Manzil Zaheer, and Chris Dyer, 2015. [[https://doi.org/10.3115/v1/P15-1077|Gaussian LDA for Topic Models with Word Embeddings]]. //Proceedings of the 53rd Annual Meeting of the Association for Computational Linguistics and the 7th International Joint Conference on Natural Language Processing//, pp. 795-804. | ||
| -Shuo Xu, Liyuan Hao, Guancan Yang, Kun Lu, and Xin An, 2021. [[https://doi.org/10.1016/j.techfore.2020.120366|A Topic Models based Framework for Detecting and Forecasting Emerging Technologies]]. //Technology Forecasting and Social Change//, Vol. 162, pp. 120366. [[:zh:notes:techemergence|Note]] | -Shuo Xu, Liyuan Hao, Guancan Yang, Kun Lu, and Xin An, 2021. [[https://doi.org/10.1016/j.techfore.2020.120366|A Topic Models based Framework for Detecting and Forecasting Emerging Technologies]]. //Technology Forecasting and Social Change//, Vol. 162, pp. 120366. [[:zh:notes:techemergence|Note]] | ||
| -Zheng Wang, Shuo Xu, and Lijun Zhu, 2018. [[https://doi.org/10.1016/j.jbi.2018.08.011|Semantic Relation Extraction Aware of N-Gram Features from Unstructured Biomedical Text]]. //Journal of Biomedical Informatics//, Vol. 86, pp. 59-70. [[:zh:notes:rel_type_tng|Note]] | -Zheng Wang, Shuo Xu, and Lijun Zhu, 2018. [[https://doi.org/10.1016/j.jbi.2018.08.011|Semantic Relation Extraction Aware of N-Gram Features from Unstructured Biomedical Text]]. //Journal of Biomedical Informatics//, Vol. 86, pp. 59-70. [[:zh:notes:rel_type_tng|Note]] | ||
| 行 25: | 行 26: | ||
| -Ting Hua, Chang-Tien Lu, Jaegul Choo, and Chandan K. Reddy, 2020. [[https://doi.org/10.1145/3369873|Probabilistic Topic Modeling for Comparative Analysis of Document Collections]]. //ACM Transactions on Knowledge Discovery from Data//, Vol. 14, No. 2, pp. 24:1-24:27. | -Ting Hua, Chang-Tien Lu, Jaegul Choo, and Chandan K. Reddy, 2020. [[https://doi.org/10.1145/3369873|Probabilistic Topic Modeling for Comparative Analysis of Document Collections]]. //ACM Transactions on Knowledge Discovery from Data//, Vol. 14, No. 2, pp. 24:1-24:27. | ||
| -Shuo Xu, Ling Li, Xin An, Liyuan Hao, and Guancan Yang, 2021. [[https://doi.org/10.1007/s11192-021-04085-9|An Approach for Detecting the Commonality and Specialty between Scientific Publications and Patents]]. //Scientometrics//, Vol. 126, No. 9, pp. 7445-7475. [[:zh:notes:common_specialty|Note]] | -Shuo Xu, Ling Li, Xin An, Liyuan Hao, and Guancan Yang, 2021. [[https://doi.org/10.1007/s11192-021-04085-9|An Approach for Detecting the Commonality and Specialty between Scientific Publications and Patents]]. //Scientometrics//, Vol. 126, No. 9, pp. 7445-7475. [[:zh:notes:common_specialty|Note]] | ||
| - | -Rajarshi Das, Manzil Zaheer, and Chris Dyer, 2015. [[https://doi.org/10.3115/v1/P15-1077|Gaussian LDA for Topic Models with Word Embeddings]]. //Proceedings of the 53rd Annual Meeting of the Association for Computational Linguistics and the 7th International Joint Conference on Natural Language Processing//, pp. 795-804. | ||
| ~~DISCUSSION~~ | ~~DISCUSSION~~ | ||