用户工具

站点工具


zh:news:reports:impact_credit_talent_gender

差别

这里会显示出您选择的修订版和当前版本之间的差别。

到此差别页面的链接

两侧同时换到之前的修订记录 前一修订版
后一修订版
前一修订版
zh:news:reports:impact_credit_talent_gender [2018/05/21 15:54]
pzczxs [学术报告:科学学的定量分析:影响力、信誉、天才和性别]
zh:news:reports:impact_credit_talent_gender [2018/05/22 12:39] (当前版本)
pzczxs [科学学的定量分析:影响力、信誉、天才和性别]
行 1: 行 1:
 ====== 科学学的定量分析:影响力、信誉、天才和性别 ====== ====== 科学学的定量分析:影响力、信誉、天才和性别 ======
-  *时间:2018年05月25日 14:00-15:300+  *时间:2018年05月25日 14:00-15:30
   *地点:北京工业大学经管楼B301   *地点:北京工业大学经管楼B301
  
 ===== 报告人简介 ===== ===== 报告人简介 =====
-黄俊铭博士,2007年本科毕业于清华大学物理系,2014年在中科院计算所获得博士学位,导师是李国杰院士。黄俊铭博士2015年赴美国东北大学复杂网络中心艾伯特—拉斯洛 ·巴拉巴西(Albert-László Barabási)课题组做博士后至今。黄博士的研究兴趣是科学学和社会网络分析。Albert-László Barabási是全球复杂网络研究的权威,无标度网络的创立者。+**黄俊铭**博士,2007年本科毕业于清华大学物理系,2014年在中科院计算所获得博士学位,导师是李国杰院士。黄俊铭博士2015年赴美国东北大学复杂网络中心艾伯特—拉斯洛 ·巴拉巴西(Albert-László Barabási)课题组做博士后至今。黄博士的研究兴趣是科学学和社会网络分析。Albert-László Barabási是全球复杂网络研究的权威,无标度网络的创立者。
  
 ===== 报告大纲 ===== ===== 报告大纲 =====
 +**Quantitative Analysis on Science of Science: Impact, Credit, Talent and Gender**
 +
 Understanding the fundamental mechanism of scientific discoveries is instrumental for policy design that aims at accelerating the scientific progress. The recent availability of large-scale digitized data on scientific publication,​ impact and collaboration provides opportunities to quantitatively explore hidden patterns governing the intrinsic of science. With a combination of tools from statistics and network science, we explore several questions that lead to quantitative understanding of scientific practice: How do scholar outputs gain impact from the scientific community? How are credits allocated among collaborators?​ How predictable a scientist would see his/her representative work in career? How do gender differences emerge and evolve in the history of science? With a deeper understanding of those factors behind scientific practice, we provide insights to capture the unfolding of science and suggestions to design policy and interventions Understanding the fundamental mechanism of scientific discoveries is instrumental for policy design that aims at accelerating the scientific progress. The recent availability of large-scale digitized data on scientific publication,​ impact and collaboration provides opportunities to quantitatively explore hidden patterns governing the intrinsic of science. With a combination of tools from statistics and network science, we explore several questions that lead to quantitative understanding of scientific practice: How do scholar outputs gain impact from the scientific community? How are credits allocated among collaborators?​ How predictable a scientist would see his/her representative work in career? How do gender differences emerge and evolve in the history of science? With a deeper understanding of those factors behind scientific practice, we provide insights to capture the unfolding of science and suggestions to design policy and interventions
  
  
zh/news/reports/impact_credit_talent_gender.1526889291.txt.gz · 最后更改: 2018/05/21 15:54 由 pzczxs