用户工具

站点工具


zh:notes:exponential_family

差别

这里会显示出您选择的修订版和当前版本之间的差别。

到此差别页面的链接

两侧同时换到之前的修订记录 前一修订版
后一修订版
前一修订版
zh:notes:exponential_family [2017/04/24 16:02]
pzczxs [Covariance of $\vec{u}(\vec{x})$]
zh:notes:exponential_family [2022/06/30 11:33] (当前版本)
pzczxs 讨论状态变化了
行 49: 行 49:
 Making use of Eq. \ref{expectation} then gives Making use of Eq. \ref{expectation} then gives
  
-\begin{eqnarray}+\begin{eqnarray} \label{covariance-middle}
   \frac{1}{g(\vec{\eta})} \nabla \nabla g(\vec{\eta}) - 2 \mathbb{E}[\vec{u}(\vec{x})] \mathbb{E}[\vec{u}(\vec{x})^{\mathrm{T}}] + \mathbb{E}[\vec{u}(\vec{x}) \vec{u}(\vec{x})^{\mathrm{T}}] & = & 0   \frac{1}{g(\vec{\eta})} \nabla \nabla g(\vec{\eta}) - 2 \mathbb{E}[\vec{u}(\vec{x})] \mathbb{E}[\vec{u}(\vec{x})^{\mathrm{T}}] + \mathbb{E}[\vec{u}(\vec{x}) \vec{u}(\vec{x})^{\mathrm{T}}] & = & 0
 \end{eqnarray} \end{eqnarray}
行 55: 行 55:
 Now, let's first consider the following ​ Now, let's first consider the following ​
  
-\begin{eqnarray} \label{log-second-derivative}+\begin{eqnarray} ​
   \nabla \nabla \ln g(\vec{\eta}) & = & \nabla \frac{\nabla g(\vec{\eta})}{g(\vec{\eta})} \nonumber \\   \nabla \nabla \ln g(\vec{\eta}) & = & \nabla \frac{\nabla g(\vec{\eta})}{g(\vec{\eta})} \nonumber \\
   & = & \frac{1}{g(\vec{\eta})} \nabla \nabla g(\vec{\eta}) - \left[ \frac{1}{g(\vec{\eta})} \nabla g(\vec{\eta}) \right] \left[ \frac{1}{g(\vec{\eta})} \nabla g(\vec{\eta}) \right]^{\mathrm{T}} \nonumber \\   & = & \frac{1}{g(\vec{\eta})} \nabla \nabla g(\vec{\eta}) - \left[ \frac{1}{g(\vec{\eta})} \nabla g(\vec{\eta}) \right] \left[ \frac{1}{g(\vec{\eta})} \nabla g(\vec{\eta}) \right]^{\mathrm{T}} \nonumber \\
-  & = & \frac{1}{g(\vec{\eta})} \nabla \nabla g(\vec{\eta}) - \mathbb{E}[\vec{u}(\vec{x}) \vec{u}(\vec{x})^{\mathrm{T}}]+  & = & \frac{1}{g(\vec{\eta})} \nabla \nabla g(\vec{\eta}) - \mathbb{E}[\vec{u}(\vec{x})] \mathbb{E}[\vec{u}(\vec{x})^{\mathrm{T}}] ​\label{log-second-derivative}
 \end{eqnarray} \end{eqnarray}
  
 Rearranging Eq. \ref{log-second-derivative},​ we obtain Rearranging Eq. \ref{log-second-derivative},​ we obtain
  
-\begin{eqnarray} +\begin{eqnarray} \label{log-second
-  \frac{1}{g(\vec{\eta})} \nabla \nabla g(\vec{\eta}) & = & \nabla \nabla \ln g(\vec{\eta}) + \mathbb{E}[\vec{u}(\vec{x}) \vec{u}+  \frac{1}{g(\vec{\eta})} \nabla \nabla g(\vec{\eta}) & = & \nabla \nabla \ln g(\vec{\eta}) + \mathbb{E}[\vec{u}(\vec{x})] \mathbb{E}[\vec{u}(\vec{x})^{\mathrm{T}}]
 \end{eqnarray} \end{eqnarray}
 +
 +Inserting Eq. \ref{log-second} into \ref{covariance-middle},​ and then we obtain
 +
 +\begin{eqnarray} \label{covariance}
 +  - \nabla \nabla \ln g(\vec{\eta}) & = & \mathbb{E}[\vec{u}(\vec{x}) \vec{u}(\vec{x})^{\mathrm{T}}] - \mathbb{E}[\vec{u}(\vec{x})] \mathbb{E}[\vec{u}(\vec{x})^{\mathrm{T}}] = \mathrm{cov}[\vec{u}(\vec{x})]
 +\end{eqnarray}
 +
 +~~DISCUSSION:​closed~~
zh/notes/exponential_family.1493020947.txt.gz · 最后更改: 2017/04/24 16:02 由 pzczxs