这里会显示出您选择的修订版和当前版本之间的差别。
两侧同时换到之前的修订记录 前一修订版 后一修订版 | 前一修订版 | ||
zh:notes:exponential_family [2017/04/24 16:13] pzczxs [Covariance of $\vec{u}(\vec{x})$] |
zh:notes:exponential_family [2022/06/30 11:33] (当前版本) pzczxs 讨论状态变化了 |
||
---|---|---|---|
行 58: | 行 58: | ||
\nabla \nabla \ln g(\vec{\eta}) & = & \nabla \frac{\nabla g(\vec{\eta})}{g(\vec{\eta})} \nonumber \\ | \nabla \nabla \ln g(\vec{\eta}) & = & \nabla \frac{\nabla g(\vec{\eta})}{g(\vec{\eta})} \nonumber \\ | ||
& = & \frac{1}{g(\vec{\eta})} \nabla \nabla g(\vec{\eta}) - \left[ \frac{1}{g(\vec{\eta})} \nabla g(\vec{\eta}) \right] \left[ \frac{1}{g(\vec{\eta})} \nabla g(\vec{\eta}) \right]^{\mathrm{T}} \nonumber \\ | & = & \frac{1}{g(\vec{\eta})} \nabla \nabla g(\vec{\eta}) - \left[ \frac{1}{g(\vec{\eta})} \nabla g(\vec{\eta}) \right] \left[ \frac{1}{g(\vec{\eta})} \nabla g(\vec{\eta}) \right]^{\mathrm{T}} \nonumber \\ | ||
- | & = & \frac{1}{g(\vec{\eta})} \nabla \nabla g(\vec{\eta}) - \mathbb{E}[\vec{u}(\vec{x})] \mathbb{E}[\vec{u}(\vec{x})]^{\mathrm{T}} \label{log-second-derivative} | + | & = & \frac{1}{g(\vec{\eta})} \nabla \nabla g(\vec{\eta}) - \mathbb{E}[\vec{u}(\vec{x})] \mathbb{E}[\vec{u}(\vec{x})^{\mathrm{T}}] \label{log-second-derivative} |
\end{eqnarray} | \end{eqnarray} | ||
行 64: | 行 64: | ||
\begin{eqnarray} \label{log-second} | \begin{eqnarray} \label{log-second} | ||
- | \frac{1}{g(\vec{\eta})} \nabla \nabla g(\vec{\eta}) & = & \nabla \nabla \ln g(\vec{\eta}) + \mathbb{E}[\vec{u}(\vec{x})] \mathbb{E}[\vec{u}(\vec{x})]^{\mathrm{T}} | + | \frac{1}{g(\vec{\eta})} \nabla \nabla g(\vec{\eta}) & = & \nabla \nabla \ln g(\vec{\eta}) + \mathbb{E}[\vec{u}(\vec{x})] \mathbb{E}[\vec{u}(\vec{x})^{\mathrm{T}}] |
\end{eqnarray} | \end{eqnarray} | ||
行 70: | 行 70: | ||
\begin{eqnarray} \label{covariance} | \begin{eqnarray} \label{covariance} | ||
- | - \nabla \nabla \ln g(\vec{\eta} & = & \mathbb{E}[\vec{u}(\vec{x}) \vec{u}(\vec{x})^{\mathrm{T}}] - \mathbb{E}[\vec{u}(\vec{x})] \mathbb{E}[\vec{u}(\vec{x})]^{\mathrm{T}} | + | - \nabla \nabla \ln g(\vec{\eta}) & = & \mathbb{E}[\vec{u}(\vec{x}) \vec{u}(\vec{x})^{\mathrm{T}}] - \mathbb{E}[\vec{u}(\vec{x})] \mathbb{E}[\vec{u}(\vec{x})^{\mathrm{T}}] = \mathrm{cov}[\vec{u}(\vec{x})] |
\end{eqnarray} | \end{eqnarray} | ||
+ | |||
+ | ~~DISCUSSION:closed~~ |