Multi-output regression aims at learning a mapping from a multivariate input feature space to a multivariate output space. Despite its potential usefulness, the standard formulation of the least-squares support vector regression machine (LS-SVR) [1][2] cannot cope with the multi-output case. The usual procedure is to train multiple independent LS-SVR, thus disregarding the underlying (potentially nonlinear) cross relatedness among different outputs.
To address this problem, inspired by the multi-task learning methods (such as [3]), Xu et. al. [4] proprosed a novel approach, Multi-output LS-SVR (MLS-SVR), in multi-output setting. MLSSVR is a MATLAB implementation of MLS-SVR with the more efficient training algorithm in [4].
MATLAB
If you find this toolbox useful, please cite MLS-SVR as follows:
PDF