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ABSTRACT

Motivation: From the scientific community, a lot of effort has been
spent on the correct identification of gene and protein names in
text, while less effort has been spent on the correct identification of
chemical names. Dictionary-based term identification has the power
to recognize the diverse representation of chemical information in the
literature and map the chemicals to their database identifiers.
Results: We developed a dictionary for the identification of
small molecules and drugs in text, combining information from
UMLS, MeSH, ChEBI, DrugBank, KEGG, HMDB and ChemIDplus.
Rule-based term filtering, manual check of highly frequent terms
and disambiguation rules were applied. We tested the combined
dictionary and the dictionaries derived from the individual resources
on an annotated corpus, and conclude the following: (i) each of
the different processing steps increase precision with a minor loss
of recall; (ii) the overall performance of the combined dictionary is
acceptable (precision 0.67, recall 0.40 (0.80 for trivial names); (iii)
the combined dictionary performed better than the dictionary in the
chemical recognizer OSCAR3; (iv) the performance of a dictionary
based on ChemIDplus alone is comparable to the performance of
the combined dictionary.
Availability: The combined dictionary is freely available as an XML
file in Simple Knowledge Organization System format on the web site
http://www.biosemantics.org/chemlist.
Contact: k.hettne@erasmusmc.nl
Supplementary information: Supplementary data are available at
Bioinformatics online.

1 INTRODUCTION
Biomedical text mining has been shown to be valuable for
diverse applications in the domains of molecular biology,
toxicogenomics, and medicine. The techniques behind current text
mining applications focus, however, for a great part on the ability
of the system to correctly identify gene and protein names in text,
while less effort has been spent on the correct identification of
chemical names (Erhardt et al., 2006; Kemp and Michael, 1998).

∗To whom correspondence should be addressed.

Indeed, the domains of genomics and chemistry have developed
quite separate from each other, until now, with the important
difference that genomic databases and the bioinformatics tools used
to mine them arise from an open-source and open-access friendly
community while chemistry has a long tradition of closedness and
restricted access to data (Murray-Rust et al., 2005; Zimmermann
et al., 2005). This is, however, about to change as more and more
chemical resources are becoming freely available [e.g. the chemistry
search engine ChemSpider (http://www.chemspider.com)], giving
rise to the new research field of chemical genomics (Murray-Rust,
2008; Williams, 2008a, b). ChemSpider has an internal dictionary
containing links to many public chemical databases and provides
web services to access the data. The dictionary is, however, not
downloadable and there is no information published on how the
dictionary was created and evaluated, which makes it difficult to
include it in text mining applications.

Finding biomedical terms in natural language is essential for
biomedical text mining. Biomedical named entity recognition (NER)
is the task of identifying the boundary of a substring and then
map the substring to a predefined category (Zweigenbaum et al.,
2007). Approaches to NER generally fall into three categories:
dictionary-based systems, rule-based systems and statistically based
systems making use of different machine learning techniques (Cohen
and Hersh, 2005). The challenges of chemical name identification
differ from the ones in the genomics field in the sense that
the exact placement of tokens such as commas, spaces, hyphens
and parentheses plays a much larger role. Chemical NER in
general has been reviewed by Banville (2006) and methods for
confidence-based chemical NER have been evaluated by Corbett
and Copestake (2008). According to Klinger et al. (2008), the only
chemical NER software freely available to the academic community
is OSCAR3 (http://sourceforge.net/projects/oscar3-chem) (Corbett
and Murray-Rust, 2006). OSCAR3 uses a combined NER approach
of overlapping 4 g together with a dictionary based on the Chemical
Entities (CM) of Biological Interest (ChEBI) ontology (Degtyarenko
et al., 2008).

In this article, we focus on the task of term identification, which
goes beyond NER to also include term mapping, i.e. the linking of
terms to referent data sources. To achieve this, a dictionary with
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database links is essential. For instance, the Whatizit system is
able to directly link protein names to their respective UniProt-ID
using a dictionary generated from the UniProt database (Rebholz-
Schuhmann et al., 2008). Naturally, the usefulness of the dictionary
approach depends on the coverage of terms in the dictionary
for the particular domain and how well the terms are suited for
natural language processing. Recently, resources such as DrugBank
(Wishart et al., 2008) and the Unified Medical Language System
(UMLS) metathesaurus (Bodenreider, 2004) have been applied for
the identification of drug names in text (Kolarik et al., 2007; Segura-
Bedmar et al., 2008) [for a recent review of literature mining in
support of drug discovery, see Agarwal and Searls (2008)]. In this
work, we aim at a broader level of chemical identification where also
the organism’s own biomolecules such as metabolites and signaling
molecules are included, referred to as small molecules in the rest of
this article. Dictionary-based approaches aiming at identifying small
molecules in text have used different proprietary resources to create
their dictionary: Singh et al. (2003) used the proprietary Compound
Knowledge Base system (Walker et al., 2002), and Zhu et al. (2005)
used the proprietary Chemical Abstracts Services (CAS) Registry
numbers (Weisgerber, 1997). Due to a lack of annotated chemical
compound test corpora, before the year 2008 only one study
reported the recall and precision of a small-molecule dictionary:
Zimmermann et al. (2005) evaluated a dictionary consisting of the
chemical part of the Medical Subject Headings (MeSH) (Lipscomb,
2000) together with ChEBI using the ProMiner system (Hanisch
et al., 2005) on a modified version of the GENIA corpus (Kim et al.,
2003), and reported 80% precision and 99% recall. They, however,
made it very clear that the high recall was due to the artificial nature
of the test corpus (since CM in the GENIA corpus mostly consist of
ion names (e.g. Ca+), these entities were removed and replaced by
compounds randomly picked from their small-molecule dictionary).
Recently, Kolarik et al. (2008) created a test corpus consisting of
100 manually annotated PubMed abstracts. Using a simple case
insensitive string search, ignoring hyphens, they tested the recall
and precision for MeSH headings, MeSH supplementary concept
records, ChEBI, PubChem (Wheeler et al., 2008), DrugBank, KEGG
drug (Kanehisa et al., 2008), KEGG compound (Goto et al., 2002),
Human Metabolome database (HMDB) (Wishart et al., 2009), and
for a combined version of the dictionaries, with the goal of gaining
knowledge about the suitability for a dictionary with curation effort.
The best recall was achieved using the a combination of all resources
(precision 13%, recall 49%) and the best precision was achieved
using KEGG drug (precision 59%, recall 12%).

The objectives of this study are (i) to create a combined dictionary
to identify small molecules and drugs in free text, and (ii) to study
the impact on precision and recall of term rewrite and suppress rules,
manual check of highly frequent terms and disambiguation rules.

2 METHODS

2.1 Choice of chemical resources
We focused on freely available and downloadable terminology resources
containing small molecules from the context of human studies. A description
of resources included is provided below.

2.1.1 Chemicals from a broad chemical space The UMLS (http://
www.nlm.nih.gov/research/umls/) contains information about biomedical
and health-related concepts, their various names and the relationships

among them. It is provided by the US National Library of Medicine
(NLM). All entities, henceforth referred to as concepts, in the UMLS
are assigned a unique concept identifier (CUI); the terms belonging to
the concept are, in turn, assigned a unique term identifier (LUI), a
unique string identifier (SUI) and a unique atom identifier (AUI). We
extracted concepts based on the CUI and terms based on the SUI. In
addition, every concept has at least one semantic type from the Semantic
Network (http://www.nlm.nih.gov/pubs/factsheets/umlssemn.html) assigned
to it. These semantic types have been aggregated into semantic groups
(McCray et al., 2001b). Similar to Wilbur et al. (1999), we used the semantic
types belonging to the semantic group ‘Chemicals & Drugs’ and removed
the types T120 ‘Chemical Viewed Functionally’, T122 ‘Biomedical and
Dental Material’ and T192 ‘Receptor’. In contrast, we excluded the semantic
types T200 ‘Clinical Drug’ (e.g. ‘fluorescein 250 mg/ml injectable solution
[fluorescein lite]’), T126 ‘Enzyme’ (e.g. ‘Kininase III’), T116 ‘Amino Acid,
Peptide or Protein’ (e.g. ‘alpha 1-antitrypsin-leukocyte elastase complex’)
and T103 ‘Chemical’ (e.g. ‘Chemicals’), and in addition, we added the
semantic type T129 ‘Immunologic Factor’ (e.g. ‘Efalizumab’). The different
choice of removal or inclusion of semantic types compared with Wilbur et al.
(1999) was determined based on a manual analysis of a random set of 100
terms from each semantic type, with the criteria that the terms should mainly
represent small molecules or drugs and be likely to be found in text. Since
the UMLS does not contain CAS numbers or InChI strings, the concepts
were mapped to CAS numbers via the MeSH identifier in the UMLS. The
resulting dictionary will be referred to as UMLSchem.

MeSH (http://www.nlm.nih.gov/mesh/) is a controlled vocabulary
thesaurus from the NLM. The terms are organized in a hierarchy to which
synonyms as well as inflectional term variants are assigned. Similar to the
UMLS, every concept in MeSH has a semantic type attached to it. We
extracted records concerning small molecules from MeSH by filtering for
the same semantic types as we used for the UMLS. We will refer to this
dictionary as MeSHchem.

MeSH supplemental concept records (http://www.nlm.nih.gov/mesh/) are
used to index chemicals, drugs and other concepts for MEDLINE and are
searchable by Substance Name [NM] in PubMed. We extracted records
concerning small molecules from MeSH by filtering for the same semantic
types as we used for the UMLS and MeSH. We will refer to this dictionary
as MeSHsupp.

ChEBI (http://www.ebi.ac.uk/chebi/) is an ontology of molecular entities,
hosted by the European Bioinformatics Institute.

PubChem (http://pubchem.ncbi.nlm.nih.gov/) is a component of the US
National Institutes of Health’s Molecular Libraries Roadmap Initiative and
is organized as three linked databases (PubChem Substance, PubChem
Compound and PubChem BioAssay) within the NCBI’s Entrez information
retrieval system. PubChem Substance is a chemical repository with little
or no manual check and curation of the records. PubChem Compound is a
subset of PubChem Substance which contains validated chemical depiction
information but no chemical synonyms. In order to retrieve high-quality
information while at the same time incorporating as many synonyms as
possible, a PubChem subset dictionary was made consisting of the PubChem
Substance records that contain a link to a PubChem Compound entry.

2.1.2 Drug terminology DrugBank (http://www.drugbank.ca/) combines
detailed drug data with drug target information. It is provided by the
University of Alberta.

KEGG drug (http://www.genome.jp/kegg/drug/) is a chemical structure-
based information resource for all approved drugs in the US and Japan. It is
maintained by the Kanehisa Laboratories. We will refer to this dictionary as
KEGGd.

2.1.3 Metabolic substances KEGG compound (http://www.genome.jp/
kegg/compound/) is a database for metabolic compounds and other chemical
substances that are relevant to biological systems. It is maintained by the
Kanehisa Laboratories. We will refer to this dictionary as KEGGc.
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HMDB (http://www.hmdb.ca/) contains detailed information about small
molecule metabolites found in the human body. HMDB is provided by the
University of Alberta.

2.1.4 Toxic substances ChemIDplus (http://www.nlm.nih.gov/pubs/
factsheets/chemidplusfs.html) is a web-based search system that provides
access to structure and nomenclature authority files used for the identification
of chemical substances cited in NLM databases, including the TOXNET
system. NLM provides a ChemIDplus subset for download which does not
include the structure or the toxicity data available from the NLM’s online
version of the database.

2.2 Data extraction
All data was downloaded on November 4, 2008. Since we aim to
create a dictionary for small molecules and drugs, it is desirable that
each separate record in the dictionary represents a unique substance.
There are currently two accepted standards that provide unique identifiers
for chemical substances: CAS Registry Numbers [proprietary, assigned
by the CAS registry (http://www.cas.org/)] and InChI strings [non-
proprietary, developed by International Union of Pure andApplied Chemistry
(IUPAC) (http://www.iupac.org/inchi/)]. Only records containing CAS
numbers or InChI strings were included in the extracted versions of the
databases. Non-English terms [term contained a non-English language
or a non-English country at the end of the term, e.g. 3,4-Benzopirene
(Italian)] and terms longer than 255 characters were removed. If a
term contained the name of the original vocabulary or pharmaceutical
company (for drugs) at the end of the term [e.g. Goserelin acetate
(JAN/USP), Wellferon (GlaxoSmithKline)], this part was removed. For
each database, we extracted the data from the fields used for entry term,
synonyms, summary structures and identifiers (Supplementary Material 1).
If available, the entry term was set as preferred term, otherwise the first
synonym was used. After extraction, all resources were transformed into
the Simple Knowledge Organization System (SKOS) thesaurus format
(http://www.w3.org/TR/skos-reference/). SKOS provides a standard way to
represent knowledge organization systems using the Resource Description
Framework.

2.3 Dictionary pre-processing
We have previously investigated the effect of a number of rewrite and
suppress rules, collectively called filtering rules, on the terms in the UMLS
(K.M.Hettne et al., submitted for publication). The number of uniquely
identified terms and their frequency in MEDLINE were computed before and
after applying the rules. The 50 most frequently found terms together with
a sample of 100 randomly selected terms were evaluated per rule. Using the
rewrite rules that passed our evaluation, we were able to identify 1 117 772
new occurrences of 14 784 rewritten terms, and using the suppress rules
that passed our evaluation, a total of 257 118 were suppressed in the UMLS.
We also implemented a software tool to apply these rules to the UMLS
(http://biosemantics.org/casper). We decided to use the rules suitable for
chemical terms to rewrite and suppress terms in the chemical dictionaries.
The rules are listed and explained below together with references to the
original sources.

Short token filter rule (McCray et al., 2001a; Rogers and Aronson,
2008): remove term if the whole term after tokenization and removal
of stop words is a single character, or is an Arabic or Roman number
(e.g. ‘T’ as an abbreviation for ‘Tritium’). For this rule, the stop word
list from PubMed (http://www.ncbi.nlm.nih.gov/books/bv.fcgi?highlight=
stopwords&rid=helppubmed.table.pubmedhelp.T43) was used. This rule
resembles the one mentioned in McCray et al. (2001a) and Rogers and
Aronson (2008) with the difference that it takes each token into account
separately.

Dosages rule (McCray et al., 2001a): the original rule addressed terms
belonging to certain term types in the UMLS, namely BD (fully specified

drug brand name that can be prescribed), CD (Clinical Drug) or MS (Multiple
names of branded and generic supplies or supplements). This rule was further
refined by us to remove all terms that contain a dosage in percent, gram,
microgram or milliliter (e.g. ‘Theophylline 0.4% and dextrose 5% in plastic
container’ as a synonym for ‘Theophylline’).

At-sign rule: this rule was implemented by us to remove terms that
contain the @-character (e.g. ‘sNqDLLQxbRvuUQX@’ as a synonym for
‘1,4-dibromobutan-2-ol’).

Any underspecification rule (McCray et al., 2001a; Rogers and Aronson,
2008): remove terms that contain any of the following features: ‘not
otherwise specified’, ‘not specified’ or ‘unspecified’; ‘NOS’ at the end of
a term and preceded by a comma, or ‘NOS’ within parentheses or brackets
at the end of a term and preceded by a space (e.g. ‘unspecified phosphate of
chloroquine diphosphate’ as synonym for ‘chloroquine diphosphate’).

Miscellaneous rule (McCray et al., 2001a; Rogers and Aronson, 2008):
remove terms that contain the following features: ‘other’ at the beginning of
a term and followed by a space character or at the end of a term and preceded
by a space character, ‘deprecated’, ‘unknown’, ‘obsolete’, ‘miscellaneous’
or ‘no’ at the beginning of a term and followed by a space character (e.g. ‘no
stereochem’ as synonym for ‘Encainide’).

Syntactic inversion rule (McCray et al., 2001a; Rogers and Aronson,
2008): add syntactic inversion of term if a term contains a comma followed
by a space and does not contain a preposition or conjunction (e.g. ‘acid,
gamma-vinyl-gamma-aminobutyric’ is rewritten to ‘gamma-vinyl-gamma-
aminobutyric acid’). We added the condition that only one such pattern of
a comma followed by a space is to be found in a term for the rule to be
executed.

Possessives rule (McCray et al., 2001a; Rogers and Aronson, 2008):
remove the possessive ‘s’at the end of a term (e.g. ‘Ringer’s lactate’ rewritten
as ‘Ringer lactate’) and add the rewritten term.

Short form/long form rule (Schwartz and Hearst, 2003): add short form
and long form of term [e.g. ‘Hydrogen chloride (HCL)’ is split into
‘Hydrogen chloride’ and ‘HCL’]. The rule is based on the abbreviation
finding algorithm described by Schwartz and Hearst (2003). The algorithm
achieved 96% precision and 82% recall on a standard test collection, which
was as good as existing approaches at the time (Schwartz and Hearst, 2003)
and still competitive according to recent comparison studies (Torii et al.,
2007; Xu et al., 2009). An advantage of the algorithm is that, unlike other
approaches, it does not require any training data. Two extra conditions were
added to the original rule by Schwartz and Hearst: (i) the short form must be
found at the end of the term, and (ii) the first letter of the short form should
be the same as the first letter of the long form. These conditions were added
in order to adjust the rule to extract abbreviations from a dictionary instead
of from biomedical text.

2.3.1 Manual check of highly frequent terms A set of 100 000 randomly
selected MEDLINE abstracts were indexed (see Section 2.5) with each
dictionary, and the top 500 most frequent terms found in the set per
dictionary were selected for manual evaluation. If they corresponded to a
general English term (e.g. ‘access’), they were added to a master list of
unwanted terms. This master list was then used to filter all dictionaries
separately.

2.4 Data resource combination
We merged entries if they had the same CAS numbers [similar to Zimmerman
et al. (2005)], database identifier, or InChI string.

2.5 Identification of chemical names
For the term and concept identification, we used our concept recognition
software Peregrine (Schuemie et al., 2007a). The Peregrine system was
designed with two goals in mind. First of all, it should be easy to maintain.
There is only a single step (manual check of highly frequent terms) that
requires human involvement when implementing a new lexicon. The second
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goal was speed. Because Peregrine does not rely on part-of-speech tagging
or natural language parsing, it is very fast: 100 000 MEDLINE records
can be processed in 213 s on a standard PC. The whole of MEDLINE
can be processed within a single day (Morgan et al., 2008). The Peregrine
system translates the terms in the dictionary into sequences of tokens or
words. When such a sequence of tokens is found in a document, the
term, and thus the chemical associated with that term, is recognized in
the text. Some tokens are ignored, since these are considered to be non-
informative (‘of’, ‘the’, ‘and’and ‘in’). We used Peregrine with the following
settings: case-insensitive, word-order sensitive and largest match. In its
default setting, the tokenizer in Peregrine considers everything that is
not a letter or a digit to be a word delimiter. To fine-tune the tokenizer
for chemical concept recognition we made the following adjustments:
full stops, commas, plus signs, hyphens, single quotation marks and all
types of parentheses ((, {, [) were excluded from the word delimiter
list. After tokenization, the tokens were stripped of trailing full stops,
commas and non-matching parentheses. Parentheses were also removed if
they surrounded the whole token. In addition, a list of common suffixes
was used to remove these suffixes at the end of tokens (Supplementary
Material 2). The suffix list was obtained by scanning the whole UMLS
(i.e. not just the chemical part) for suffixes that were English verbs or
adjectives.

2.5.1 Disambiguation rules Disambiguation of terms is important since
terms not only can have different meanings (‘word senses’) in a dictionary
but also in text (e.g. ‘BAP’ is a shared synonym between the two chemicals
‘Benzo(a)pyrene’ and ‘Benzyladenine’ and has an additional 44 meanings
according to Acronym Finder (http://www.acronymfinder.com), including
‘Blood Agar Plate’, ‘BiP-Associated Protein’ and ‘British Association
of Psychotherapists’). Word-sense disambiguation algorithms can be
distinguished as supervised, unsupervised or using established knowledge
(Alexopoulou et al., 2009; Edmonds and Agirre, 2006). Peregrine uses
established knowledge to disambiguate terms on the fly during the indexation
process. Specifically, Schuemie et al. (2007a, 2007b) evaluated a number
of rules to disambiguate gene names found in text. These disambiguation
rules are potentially also applicable to chemical names. Disambiguation of
terms found in text was carried out as follows (Fig. 1). We first determine
whether a term is a dictionary homonym, i.e. if it refers to more than one
entity in the dictionary. If the term is a dictionary homonym, but it is the
preferred term of that entity, it is further handled as if it is not a dictionary
homonym. If the term is not a dictionary homonym it still needs further
processing since it can have many meanings in text. Therefore, terms that
are not complex (i.e. longer than five characters or containing a number)
are also considered potential homonyms, and require extra information to
be assigned. A (potential) homonym is only kept if (i) another synonym of
the entity is found in the same piece of text; (ii) a keyword (i.e. a word or
‘token’ that occurs in any of the long-form names of the small molecule, and
appears less than 1000 times in the dictionary as a whole) is found in the
same piece of text.

IsHomonym 

HasSynonym 

IsComplex 

HasKeyword 

Keep
term 

Remove 
term 

false 

false 

false 

false true 

true 

true IsPreferred 

true 

false 

true 

Fig. 1. Term disambiguation scheme.

2.6 Annotated test corpus
The annotated corpus (http://www.scai.fraunhofer.de/chem-corpora.html)
from Kolarik et al. (2008) was used to test the chemical dictionaries.
The corpus consists of 100 MEDLINE abstracts with 1206 annotated
chemical occurrences divided into the following groups: multi-word
systematic names (IUPAC, 391 occurrences), partial chemical names
(PART, 92 occurrences), sum formulas (SUM, 49 occurrences), trivial
names (including single word IUPAC names) (TRIV, 414 occurrences),
abbreviations (ABB, 161 occurrences) and chemical family names (FAM,
99 occurrences). Larger drug molecules such as protein drugs were not
annotated. See Kolarik et al. (2008) for details on the creation of the
corpus.

3 RESULTS

3.1 Dictionary characteristics
The number of concepts in the dictionaries before any processing
and removal of concepts that did not have a CAS number or
InChI string were the following: ChEBI 20 606; ChemIDplus
367 358; DrugBank 4776; HMDB 6892; KEGGc 13 543; KEGGd
7737; MeSHchem 6831; MeSHSupp 100 198; PubChem 3 987 338;
UMLSchem 197 578. Table 1 shows the characteristics of the
different dictionaries after applying filtering and manual check
of highly frequent terms. No dictionary was completely covered
by another which justifies a combination of all dictionaries
(Supplementary Material 3). Most dictionaries contain non-unique
records, i.e. two or more records with the same CAS number or InChI
string. These records were merged when the combined dictionary
was created. The number of terms affected by the filtering rules and
manual check of highly frequent terms per dictionary can be found
in Supplementary Material 4. The master list of unwanted terms
from the manual check of highly frequent terms that was used to
filter all the dictionaries (258 terms) can be found in Supplementary
Material 5.

Table 1. Contents of the different vocabularies after removal of concepts
lacking a CAS number or InChI string and application of filter rules and
manual check of highly frequent termsa

Dictionary Concepts Terms CAS numbers InChI strings

ChEBI 11 428 65 409 6436 (6295) 11 212 (11 152)
ChemIDplus 260 393 1 378 808 260 393 (260 393) –
DrugBank 4540 37 508 2240 (2218) 4381 (4208)
HMDB 6859 75 957 2683 (2537) 6857 (6734)
KEGGc 11 976 31 143 7695 (7661) 11 875 (11 738)
KEGGd 6927 18 697 6769 (6670) 6140 (6083)
MeSHchem 2897 29 023 2897 (2897) –
MeSHsupp 19 137 92 918 19 137 (19 137) –
PubChem 383 043 2 121 960 420 737 (395 108) 16 222 (16 108)
UMLSchem 47 508 126 470 47 509 (18 703) –
Combined 377 849 2 600 445 400 899 (400 899) 50 254 (50 254)

Notably, PubChem contains more unique CAS numbers than unique concepts. There
can be various reasons for the ‘extra’ CAS numbers for a compound. For example,
the CAS registry may assign different CAS numbers for the same compound based on
properties such as purity, polymorphism, or country of registration.
aThe numbers in parentheses refer to the number of unique CAS numbers or InChI
strings.
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Table 2. Precision (P), recall (R) and F-score (F) of the dictionaries for the annotated corpus

Dictionary Unprocessed Filtered Curated Disambiguation Kolarik

P R F P R F P R F P R F P R F

ChEBI 0.21 0.28 0.24 0.58 0.28 0.38 0.63 0.28 0.39 0.71 0.25 0.37 0.13 0.27 0.18
ChemIDplus 0.27 0.41 0.33 0.43 0.40 0.41 0.60 0.40 0.48 0.71 0.37 0.49 – – –
DrugBank 0.40 0.22 0.28 0.50 0.22 0.31 0.70 0.21 0.32 0.77 0.19 0.30 0.33 0.13 0.19
HMDB 0.21 0.22 0.21 0.57 0.21 0.31 0.66 0.21 0.32 0.71 0.18 0.29 0.21 0.16 0.18
KEGGc 0.43 0.25 0.32 0.58 0.25 0.35 0.70 0.25 0.37 0.72 0.23 0.35 0.30 0.24 0.27
KEGGd 0.63 0.16 0.26 0.73 0.16 0.26 0.76 0.16 0.26 0.78 0.16 0.27 0.59 0.12 0.20
MeSHchem 0.70 0.23 0.35 0.70 0.23 0.35 0.74 0.23 0.35 0.75 0.22 0.34 0.34 0.27 0.30
MeSHsupp 0.75 0.08 0.14 0.75 0.08 0.14 0.82 0.08 0.15 0.83 0.07 0.13 0.15 0.10 0.12
PubChem 0.24 0.47 0.32 0.39 0.47 0.43 0.58 0.47 0.52 0.73 0.35 0.47 0.15 0.33 0.21
UMLSchem 0.43 0.32 0.37 0.62 0.32 0.42 0.74 0.32 0.45 0.78 0.29 0.42 – – –
Combined (PubChem included) 0.18 0.49 0.26 0.36 0.49 0.42 0.51 0.49 0.50 0.62 0.39 0.48 0.13 0.49 0.21
Combined (PubChem excluded) 0.20 0.47 0.28 0.39 0.46 0.42 0.55 0.46 0.50 0.67 0.40 0.50 – – –

For comparison, the results from Kolarik et al. (2008) have also been included.

3.2 Dictionary performance
Dictionary term strings that matched the start and end positions of
the chemical term strings in the corpus constituted true positives
(TP), dictionary term strings that did not match were false positives
(FP) and chemical term strings in the corpus that were not matched
were false negatives (FN). Recall (R), precision (P) and F-score
were computed in the usual way:

• Recall = TP/(TP + FN)

• Precision = TP/(TP + FP)

• F-score = (2 × P× R)/(P + R)

Table 2 shows the effect of preprocessing and disambiguation on
precision and recall for each of the dictionaries. The values reported
by Kolarik et al. (2008) are also shown, if available. It is clear
that the preprocessing steps and the disambiguation rules have a
strong positive influence on the precision of all dictionaries. We
also achieve higher recall and precision than Kolarik et al. (2008)
for most dictionaries even in the unprocessed stage, which may be
explained by updates of the dictionaries since the study by Kolarik
et al. (2008), by our additional criteria to only include entities
with a CAS number or InChI string, and by our refined search
strategy. The combined version of all dictionaries after executing
all the preprocessing steps and disambiguation rules had the highest
recall (0.39) but the lowest precision (0.62) compared with all
the separate dictionaries using disambiguation (Table 2), which
led us to investigate the possibility to exclude resources with low
precision to further improve the precision of the combined dictionary
without loss of recall. PubChem had the lowest precision (0.58)
of all dictionaries before application of the disambiguation rules,
which raises questions about the quality of the data. Indeed, in a
recent publication by Richard et al. (2006) concerning chemical
information available in databases and through search engines, the
quality of chemical information in PubChem was described as
‘user beware’. Also Williams (2008b) expressed concerns about
the accuracy of some of the identifiers associated with PubChem
compounds. In addition, all resources that we used claim to perform
manual curation of the data except for PubChem. When PubChem

was left out of the combined dictionary it achieved a precision
of 0.67 and a recall of 0.40, both higher than for the combined
dictionary without PubChem. When removing the dictionary with
the second lowest precision before disambiguation (ChemIDplus:
0.60), the precision of the combined dictionary rose to 0.69 but
at the cost of lower recall (0.37) (for comparison, ChemIDplus
alone achieved better precision with the same recall; Table 2).
Since the removal of PubChem from the combined dictionary
improved both the recall and the precision, the combined dictionary
without PubChem was used for further analysis. Notably, the
curated dictionary with disambiguation rules applied has much
higher precision (0.67) than the combined dictionary reported
by Kolarik et al. (2008) (0.13), with a difference in recall of
9 percentage points. The combined dictionary without PubChem
contains 1 692 020 terms belonging to 278 577 concepts. Of these
concepts, 266 705 have a CAS number and 34 146 have an InChI
string. The curated combined dictionary (PubChem excluded) with
disambiguation rules applied had the highest F-score (F = 0.50)
at a reasonable precision (0.67), closely followed by the curated
version of ChemIDplus with disambiguation rules applied (F = 0.49,
precision = 0.71). Overall, the recall was best for the TRIV class of
entities (Supplementary Material 6), with ChemIDplus as the best
performing dictionary (recall 0.82) and the combined dictionary
(PubChem excluded) as a close number two (0.80). The PART
class of entities had the lowest recall of all classes (0.00) with the
combined dictionary (PubChem excluded) and PubChem as the best
performing dictionary (0.04). The PART class is, however, more
relevant when the corpus is going to be used for machine learning
purposes since parts of chemical names are not expected to be found
in dictionaries. This class was, therefore, left out of the error analysis
in Section 3.3.

To investigate the effect of a general normalization procedure
on chemical terms, we ran an analysis using the normalization
program norm that comes with the LVG normalizer (McCray et al.,
1994). The LVG normalizer operates after the tokenization has
taken place but before disambiguation of terms. The normalization
procedure constitutes lower casing each token, converting each
token to its base form, ignoring punctuation and sorting the tokens
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in a multi-token term into alphabetic order. The analysis run resulted
in one percentage point lower precision and one percentage point
higher recall. The additional terms resulting in the higher recall for
the combined dictionary, however, all corresponded to family names
being mapped to a single chemical in the dictionary (e.g. diphenols
mapped to diphenol), which for the purpose of term identification
is to be considered an error. The lower precision was caused by the
removal of punctuation, a very important feature of chemical terms,
which introduces unnecessary homonyms in the dictionary [e.g. ‘(-)-
Catechol’ (CAS 18829-70-4) becomes the same as ‘Catechol’ (CAS
120-80-9)]. To further illustrate the importance of punctuation in
chemical term identification, we ran an analysis using the original
tokenizer in Peregrine (Section 2.5). This run resulted in a precision
of 0.42 and a recall of 0.40, the much lower precision mainly
arising from erroneous partial mapping of terms. In contrast, the
original tokenizer in Peregrine has produced good results (precision
0.75, recall 0.76) for a combined dictionary of gene names on the
BioCreAtIvE 2 test set (Schuemie et al., 2007a). We used an updated
version of the combined dictionary of gene names on the same
BioCreAtIvE 2 test set with the two different tokenizers, resulting
in a precision of 0.74 and recall of 0.81 (F = 0.77) for the original
tokenizer and a precision of 0.76 and a recall of 0.79 (F = 0.77) for
the modified tokenizer. Judged by these results, punctuation is less
important for gene names than for chemical names.

To compare a pure dictionary-based term identification approach
with a combined NER approach, we ran OSCAR3 on the corpus.
To make the comparison as fair as possible, only CM were counted,
thus excluding the other entity classes in OSCAR3 (ASE = enzyme,

Table 3. Recall values for the entity classes as defined by Kolarik et al.
(2008) using the curated combined dictionary with disambiguation rules
applied (=Combined), OSCAR3 (=OSCAR3) and the dictionary in OSCAR3
(=OSCAR3_dict)

Entity class Combined OSCAR3 OSCAR3_dict

IUPAC (391) 0.21 0.82 0.08
PART (92) 0.04 0.84 0.10
SUM (49) 0.29 0.82 0.00
TRIV (414) 0.80 0.79 0.50
ABB (161) 0.22 0.84 0.08
FAM (99) 0.19 0.84 0.44

CPR = chemical prefix, RN = reaction, CJ = chemical adjective,
ONT = ontology term). Using this approach, OSCAR3 had a
precision of 0.45 and a recall of 0.82 on the corpus, giving an F-score
of 0.58. If only entities that had been mapped to the dictionary in
OSCAR3 (we will refer to these as OSCAR3_dict) were taken into
account, the system achieved a precision of 0.68 and a recall of
0.25, giving an F-score of 0.37, comparable to the curated version
of ChEBI in our approach with disambiguation rules applied. Recall
values for the different entity classes are presented in Table 3. The
curated combined dictionary had the highest recall value for the
TRIV class of entities, which also was the highest for that class for all
approaches. OSCAR3_dict scored higher than the curated combined
dictionary for the PART and FAM classes of entities. OSCAR3 had
a high recall over all entity classes.

3.3 Error analysis
We performed a manual error analysis for the combined curated
dictionary with disambiguation rules applied and the results from
OSCAR3 and OSCAR3_dict. A random set of maximum 25 false
negatives from each class (Table 4) and a random set of 50 false
positives (Table 5) were analyzed for each approach. We defined
six error categories for the false negatives: partial match (e.g. only
‘azaline’ in ‘azaline B’ was recognized); annotation error (e.g. only
part of the chemical name has been marked in the text: ‘thiophen’
in ‘thiophene’); not in dictionary; removed by disambiguation (e.g.
single letter ‘T’); removed by manual check of highly frequent terms
(e.g. ‘acid’); and tokenization error [e.g. ‘Ca(2+)’ will not be found
in the sentence ‘… free calcium concentration ([Ca(2+)]i) of human
peripheral blood lymphocytes …’ due to the positioning of the ‘i’
that does not allow the surrounding brackets to be removed from
the entity]. For the false positives, we defined four error categories:
partial match; annotation error; out of corpus scope (e.g. larger
drug molecules such as protein drugs); not a chemical (e.g. ‘n = 34’
was tokenized and mapped to ‘N 34’, which is a synonym for
Calcium Carbonate). The major reason that entities were not found
(i.e. were false negatives) was that they simply were not in the
combined curated dictionary or the dictionary in OSCAR3_dict, or
for OSCAR3, were not recognized by the NER algorithm (Table 4).
For the combined curated dictionary, this holds true for all classes
except ABB, for which a larger part was removed during the
disambiguation step. This is not surprising since abbreviations are
notoriously ambiguous and difficult to resolve. For OSCAR3, the

Table 4. Error analysis of a random sample of max 25 false negatives from each class for the combined curated dictionary (PubChem excluded) with
disambiguation rules applied (=Comb.), OSCAR3 (=OSC) and the dictionary part of OSCAR3 (=OSC_d)

Error type TRIV SUM IUPAC FAM ABB

Comb OSC OSC_d Comb OSC OSC_d Comb OSC OSC_d Comb OSC OSC_d Comb OSC OSC_d

Partial match 3 1 3 0 0 0 0 23 3 0 4 2 0 3 0
Annotation error 2 2 3 0 0 1 1 2 1 0 0 0 0 0 0
Not in dictionary/recognized 15 21 19 16 0 22 24 0 21 24 12 23 8 18 25
Removed by disambiguation 5 0 0 7 0 0 0 0 0 1 0 0 12 0 0
Removed by manual check of

highly frequent terms
0 0 0 1 0 0 0 0 0 0 0 0 2 0 0

Tokenization error 0 1 0 1 9 2 0 0 0 0 0 0 3 4 0
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Table 5. Error analysis of a random sample of 50 false positives for
the combined curated dictionary (PubChem excluded) (=Combined) with
disambiguation rules applied, OSCAR3 (=OSCAR3) and the dictionary part
of OSCAR3 (OSCAR3_dict)

Error type False positives

Combined OSCAR3 OSCAR3_dict

Partial match 15 9 20
Annotation error 6 6 9
Out of corpus scope 21 13 16
Not a chemical 8 22 5

exceptions are instead the IUPAC class, where a majority of the false
negatives were only partially found and the SUM class for which
the tokenizer performed poorly. For the false positives, it was clear
that the corpus is not optimal for a dictionary that aims at both small
molecules and drugs, since larger drug molecules have not been
annotated in the corpus. This was true for 42% of the entities in the
random set for the combined dictionary approach, 32% of the entities
in the random set for the OSCAR3_dict and 26% of the entities in
the random set for OSCAR3 (Table 5). Another major source for the
false positives using all approaches was partial matches of longer
chemical names. For OSCAR3, it can be noted that it recognized
a higher percentage of non-CM than the combined dictionary and
OSCAR3_dict.

4 DISCUSSION
For all dictionaries, the best F-scores in combination with high
precision are reached with the disambiguation rules applied.
Disambiguation is, therefore, of high importance when the
dictionaries are to be used for text mining purposes. The combined
curated dictionary (excluding PubChem) with disambiguation rules
applied had the best F-score of all of the separate curated dictionaries
with disambiguation rules applied, even better than PubChem and
ChemIDplus which themselves are made up of combinations of
different resources. Still, the good performance of the combined
dictionary can be weighted against the time-consuming process of
downloading, curating and combining all the different resources.
The best alternative to a combined dictionary would be ChemIDplus,
which showed a minor difference in performance compared with
the combined dictionary. The downloadable version of ChemIDplus
does, however, not contain InChI strings.

The largest part of the false positives could be contributed to
the fact that not all chemicals were tagged in the corpus. Even
though the corpus is a welcome initiative, it is not ideal for the
testing of a dictionary that is a combination of small molecules
and drugs since large drug molecules such as protein drugs are not
annotated. The other major factor that caused false positives was
that parts of chemical terms were recognized as whole entities. This
happened because the dictionary did not contain the larger term.
A way around this would be to first determine the boundaries of
a chemical and then map it to a dictionary. This, however, seems
to only partly solve the problem since even though OSCAR3 uses
such an approach, it scored high in the partial match error category
for both the false negatives (class IUPAC) and the false positives.

The fact that more than half of the false positives were caused by
problems that have nothing to do with the dictionary (entity out of
corpus scope, or annotation error), put the relatively low precision
of 0.67 in a different light. If these false positives would be excluded
from the analysis, the combined dictionary would have a precision
of 0.90.

According to our study, a recall of 0.49 (at a precision of
0.51) would be the highest achievable recall for a pure dictionary
approach to term recognition and mapping. This is the recall reached
by the curated combined dictionary (PubChem included) without
disambiguation rules applied. Kolarik et al. (2008) reached the same
recall at a precision of 0.13. If higher recall is desired, an approach
such as has been implemented in OSCAR3, i.e. a combined NER
approach using machine learning together with a dictionary, would
be the better choice. This approach has, however, the disadvantages
of lower precision (at least on the corpus used in this study) and
an incomplete mapping of entities to external data sources. The
precision of OSCAR3 on the corpus (0.45) is lower than what has
been reported by Corbett et al. (2007) on a non-public PubMed
corpus (0.75), but the recall (0.82) is better (Corbett et al. reported
a recall of 0.74). Notably, many (44%) of the false positives arising
from OSCAR3 fell under the non-CM error category. These were
mainly abbreviations of entities such as ‘CNS’ for ‘Central Nervous
System’ or ‘AD’ for ‘Alzheimer Disease’ or text structures that
resemble CM such as ‘11a–c’ or ‘IC(50)’. The false positives arising
from non-chemical abbreviations could possibly be removed with
the use of the disambiguation rules described in this study. If the
false positives that were due to corpus mismatch and annotation
errors are removed from the calculation, the precision is still lower
(57.3%) but at least closer to the one earlier reported. The difference
in precision and recall can be due to differences in the annotation
scheme of CM underlying the training corpus used in OSCAR3 and
the corpus by Kolarik et al. (2008). The dictionary in OSCAR3 had a
lower recall than the combined dictionary [precision 0.68 (0.84 when
corrected for corpus mismatch and annotation errors) and recall 0.25
versus precision 0.67 (0.90 when corrected for corpus mismatch and
annotation errors) and recall 0.40], which suggests that the dictionary
in OSCAR3 would benefit from a combined dictionary approach.
However, embedding the combined dictionary from this study in
OSCAR3 is out of the scope of this article and we suggest this for
future research.

In our study and in the study by Kolarik et al. (2008), an important
class with low recall was IUPAC. The main reason for not finding
these entries was that they simply were not present in the combined
dictionary, even though IUPAC-like names had been added when
available. Clearly, dictionary-based term identification is not capable
of identifying multiple-term systematic names to a satisfactory
extent since not enough of these types of names are available in
current resources. If only a synonym for an entity is missing, this
might be solved by term variant generation but if the whole entity
is missing from the dictionary it can only be solved by adding the
entity to the dictionary. Spelling errors might be helped by fuzzy
matching (Bingjun et al., 2007, 2008; Chen et al., 2007; Schulz
et al., 2006), with a possible cost to precision. In contrast, machine-
learning or rule-based systems have reported good performance for
the recognition of multiple-term systematic names [e.g. Klinger
et al. reported an F-score of 0.82 on a PubMed corpus for their
method based on conditional random fields (CRFs) and CRFs was
also used in a high proportion of entries in the latest BioCreative
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evaluation (Smith et al., 2008), OSCAR3 had a recall of 0.82 for the
IUPAC class of entities on the corpus used in this study, Corbett and
Copestake an F-score of 0.83 for a system of cascaded classifiers on
a PubMed corpus and Wren (2006) a recall of 0.93 with an average
precision of 0.83 (depending upon the cutoff score used) for a first
order Markov model on a PubMed corpus], but then the problem
remains of mapping a term to its referent data source.

The lower recall of 0.40 for the combined dictionary with the
disambiguation rules applied compared to without disambiguation
is foremost due to the problem associated with the disambiguation
of abbreviations and summary structures. Yu et al. (2007) divided
the problem of disambiguating abbreviations into two types.
First, abbreviations may be disambiguated (‘defined’) near their
occurrence in the text. The second type of abbreviation appears
without the intended full form nearby. This second type of
abbreviation is more prevalent and harder to disambiguate (Yu et al.,
2002, 2007). Abbreviations and summary structures of chemicals are
of the second type, in the sense that they are used in abstracts to a
large extent without the long form of the term, which will cause these
entities to be removed since there is not enough extra information
to make sure that they actually represent a CM. Using full text
articles instead of abstracts might be an answer but unfortunately
there has been a report of high (75%) occurrence of abbreviations
without their long forms also in full text articles (Yu et al., 2002). To
resolve this, another way of taking the context into account is needed,
using for example document labeling. If a document is labeled,
a term could be assigned directly if it was not an in-dictionary
homonym.

5 CONCLUSIONS
In this article, we present a method to prepare a chemical dictionary
for dictionary-based text mining. We conclude that preprocessing
of terms with limited manual check of highly frequent terms
together with disambiguation rules increase precision with a minor
loss of recall, leading to a an acceptable overall performance
for a combined dictionary. In addition, the combined dictionary
performed better than the dictionary in the state-of-the-art chemical
recognizer OSCAR3. We also conclude that ChemIDplus performs
almost as well as a combined version of all dictionaries.
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