
KEA: Practical Automatic Keyphrase Extraction

Ian H. Witten,* Gordon W. Paynter,* Eibe Frank,* Carl Gutwin† and Craig G. Nevill-Manning‡

* Dept of Computer Science,
University of Waikato,

Hamilton, New Zealand.
{ihw,gwp,eibe}@cs.waikato.ac.nz

† Dept of Computer Science,
University of Saskatchewan,

Saskatoon, Canada
gutwin@cs.usask.ca

‡ Dept of Computer Science,
Rutgers University,

Piscataway, New Jersey
nevill@cs.rutgers.edu

ABSTRACT
Keyphrases provide semantic metadata that summarize and
characterize documents. This paper describes Kea, an algo-
rithm for automatically extracting keyphrases from text.
Kea identifies candidate keyphrases using lexical methods,
calculates feature values for each candidate, and uses a ma-
chine-learning algorithm to predict which candidates are
good keyphrases. The machine learning scheme first builds
a prediction model using training documents with known
keyphrases, and then uses the model to find keyphrases in
new documents. We use a large test corpus to evaluate
Kea’s effectiveness in terms of how many author-assigned
keyphrases are correctly identified. The system is simple,
robust, and publicly available.

INTRODUCTION
Keyphrases provide a brief summary of a document’s con-
tents. As large document collections such as digital libraries
become widespread, the value of such summary informa-
tion increases. Keywords and keyphrases1  are particularly
useful because they can be interpreted individually and
independently of each other. They can be used in informa-
tion retrieval systems as descriptions of the documents re-
turned by a query, as the basis for search indexes, as a way
of browsing a collection, and as a document clustering
technique.

                                                
1 throughout this document we use the latter term to subsume

the former

In addition, keyphrases can help users get a feel for the
content of a collection, provide sensible entry points into
it, show how queries can be extended, facilitate document
skimming by visually emphasizing important phrases; and
offer a powerful means of measuring document similarity
(e.g. [6], [8], [13]).

Keyphrases are usually chosen manually. In many aca-
demic contexts, authors assign keyphrases to documents
they have written. Professional indexers often choose
phrases from a predefined “controlled vocabulary” relevant
to the domain at hand. However, the great majority of
documents come without keyphrases, and assigning them
manually is a tedious process that requires knowledge of
the subject matter. Automatic extraction techniques are
potentially of great benefit.

Several methods have been proposed for generating or ex-
tracting summary information from text (e.g. [1], [7],
[10]). In the specific domain of keyphrases, there are two
fundamentally different approaches: keyphrase assignment
and keyphrase extraction. Both use machine learning meth-
ods, and require for training purposes a set of documents
with keyphrases already attached.

Keyphrase assignment seeks to select the phrases from a
controlled vocabulary that best describe a document. The
training data associates a set of documents with each
phrase in the vocabulary, and builds a classifier for each
phrase. A new document is processed by each classifier,
and assigned the keyphrase of any model that classifies it
positively (e.g. [3]). The only keyphrases that can be as-
signed are ones that have already been seen in the training
data.

Keyphrase extraction, the approach used here, does not use
a controlled vocabulary, but instead chooses keyphrases
from the text itself. It employs lexical and information re-
trieval techniques to extract phrases from the document
text that are likely to characterize it [12]. In this approach,
the training data is used to tune the parameters of the ex-
traction algorithm.



This paper describes a new keyphrase extraction algorithm,
Kea, that is simple and effective, and performs at the cur-
rent state of the art  [5]. It uses the Naïve Bayes machine
learning algorithm for training and keyphrase extraction.
An implementation is available from the New Zealand
Digital Library project (http://www.nzdl.org/).

Kea’s output is illustrated in Table 1, which shows the titles
of three research articles and two sets of keyphrases for
each article. One set gives the keyphrases assigned by the
author; the other was determined automatically from the
article’s full text. Phrases in common between the two sets
are italicized.

In each case, the author’s keyphrases and the automati-
cally-extracted keyphrases are quite similar, but it is not
too difficult to guess which phrases are the author’s. The
giveaway is that Kea, in addition to choosing several good
keyphrases, also chooses some that authors are unlikely to
use—for example, gauge, smooth, and especially garbage!
Despite these anomalies, the automatically-extracted lists
seem to provide a reasonable description of the three pa-
pers. In the case where no author-specified keyphrases were
available, Kea’s choices would be a valuable resource to
someone encountering these three articles for the first time.

Our goal, therefore, is to provide useful metadata where
none existed before. Although we evaluate Kea’s perform-
ance by comparing with the author’s own keyphrases, we
do not expect to equal them. If we can extract reasonable
summaries from text documents, we give a valuable tool to
the designers and users of digital libraries. The remainder
of this paper describes Kea. The next section details the
design of the algorithm. We then give an example of the
prediction model generated by Kea and show how it is used
to assess a candidate keyphrase. Following that, we report
on several experiments designed to test Kea’s effectiveness
and to explore the effects of varying parameters in the ex-
traction process.

THE KEA ALGORITHM
Kea’s extraction algorithm has two stages:

1. Training: create a model for identifying keyphrases,
using training documents where the author’s key-
phrases are known.

2. Extraction: choose keyphrases from a new document,
using the above model.

The process is outlined in Figure 1. Both stages choose a set
of candidate phrases from their input documents, and then
calculate the values of certain attributes (called features) for
each candidate. We describe these two steps first, and then
outline the training and extraction stages in more detail.

Candidate phrases
Kea chooses candidate phrases in three steps. It first cleans
the input text, then identifies candidates, and finally stems
and case-folds the phrases.

Input cleaning
ASCII input files are filtered to regularize the text and de-
termine initial phrase boundaries. The input stream is split
into tokens (sequences of letters, digits and internal peri-
ods), and then several modifications are made:
•  punctuation marks, brackets, and numbers are re-

placed by phrase boundaries;
• apostrophes are removed;
• hyphenated words are split in two;
• remaining non-token characters are deleted, as are any

tokens that do not contain letters.

The result is a set of lines, each a sequence of tokens con-
taining at least one letter. Acronyms containing periods,
like C4.5, are retained as single tokens.

Protocols for secure, atomic transaction
execution in electronic commerce

Neural multigrid for gauge theories and
other disordered systems

Proof nets, garbage, and computations

anonymity
atomicity
auction
electronic

commerce
privacy
real-time
security
transaction

atomicity
auction
customer
electronic

commerce
intruder
merchant
protocol
security
third party
transaction

disordered sys-
tems

gauge fields
multigrid
neural multigrid
neural networks

disordered
gauge
gauge fields
interpolation ker-

nels
length scale
multigrid
smooth

cut-elimination
linear logic
proof nets
sharing graphs
typed lambda-

calculus

cut
cut elimination
garbage
proof net
weakening

XUSHUO
高亮

XUSHUO
高亮

XUSHUO
高亮



Phrase identification
Kea then considers all the subsequences in each line and
determines which of these are suitable candidate phrases.
We have investigated several methods for determining
suitability, such as looking for noun phrases, but we have
found that the following rules are both simple and effec-
tive:
1. Candidate phrases are limited to a certain maximum

length (usually three words).
2. Candidate phrases cannot be proper names (i.e. single

words that only ever appear with an initial capital).
3. Candidate phrases cannot begin or end with a stop-

word.
The stopword list contains 425 words in nine syntactic
classes (conjunctions, articles, particles, prepositions, pro-
nouns, anomalous verbs, adjectives, and adverbs). For
most of these classes, all the words listed in an on-line dic-
tionary were added to the list. However, for adjectives and
adverbs, we introduced several subclasses, and words from
the subclasses were added only if they overlapped the sixty
most common words in the Brown corpus [9]. Further-
more, we only added frequently-occurring words from
these subclasses.

All contiguous sequences of words in each input line are
tested using the three rules above, yielding a set of candi-
date phrases. Note that subphrases are often candidates
themselves. Thus, for example, a line that reads the pro-
gramming by demonstration method will generate program-
ming, demonstration, method, programming by demonstra-
tion, demonstration method, and programming by demon-
stration method as candidate phrases, because the and by
are on the stopword list.

Case-folding and stemming
The final step in determining candidate phrases is to case-
fold all words and stem them using the iterated Lovins
method. This involves using the classic Lovins stemmer
[11] to discard any suffix, and repeating the process on the
stem that remains until there is no further change. So, for
example, the phrase cut elimination becomes cut elim.

Stemming and case-folding allow us to treat different
variations on a phrase as the same thing. For example,
proof net and proof nets are essentially the same, but with-
out stemming they would have to be treated as different
phrases. In addition, we use the stemmed versions to com-
pare Kea’s output to the author’s keyphrases. We consider
an author-specified keyphrase to have been successfully
identified if, when stemmed, it is the same as a machine-
generated keyphrase, also stemmed. That is why in Table 1
the phrases cut-elimination and cut elimination, and proof
nets and proof net, are considered equivalent.

We retain the unstemmed words for each phrase, in their
original capitalization, for presentation to the user in case
the phrase does turn out to be a keyphrase. When several
different capitalizations occur, the most frequent version is
chosen.

Feature calculation
Two features are calculated for each candidate phrase and
used in training and extraction. They are: TF×IDF, a meas-
ure of a phrase’s frequency in a document compared to its
rarity in general use; and first occurrence, which is the dis-
tance into the document of the phrase’s first appearance.

TF×IDF
This feature compares the frequency of a phrase’s use in a
particular document with the frequency of that phrase in

Figure 1 The training and extraction processes

candidate
phrase

identification
feature

calculation

phrase in
document
frequency
calculation

candidate
phrase

identification

candidate
phrase

identification

global
corpus

training
documents

test
documents

learning

feature
generation

model

keyword
ranking

DF

training

extraction

XUSHUO
高亮

XUSHUO
高亮

XUSHUO
高亮



general use. General usage is represented by document fre-
quency—the number of documents containing the phrase
in some large corpus. A phrase’s document frequency indi-
cates how common it is (and rarer phrases are more likely
to be keyphrases). Kea builds a document frequency file for
this purpose using a corpus of about 100 documents.
Stemmed candidate phrases are generated from all docu-
ments in this corpus using the method described above.
The document frequency file stores each phrase and a
count of the number of documents in which it appears.

With this file in hand, the TF×IDF for phrase P in docu-
ment D is:

TF×IDF = 
freq

size( )
df( , )

log
( )P D

D

P

N
× − 2 , where

1. freq(P,D) is the number of times P occurs in D
2. size(D) is the number of words in D
3. df(P) is the number of documents containing P in the

global corpus
4. N is the size of the global corpus.

The second term in the equation is the log of the probabil-
ity that this phrase appears in any document of the corpus
(negated because the probability is less than one). If the
document is not part of the global corpus, df(P) and N are
both incremented by one before the term is evaluated, to
simulate its appearance in the corpus.

First occurrence
The second feature, first occurrence, is calculated as the
number of words that precede the phrase’s first appear-
ance, divided by the number of words in the document.
The result is a number between 0 and 1 that represents how
much of the document precedes the phrase’s first appear-
ance.

Discretization
Both features are real numbers and must be converted to
nominal data for the machine-learning scheme. During the
training process, a discretization table for each feature is
derived from the training data. This table gives a set of
numeric ranges for each feature, and values are replaced by
the range into which the value falls. Discretization is ac-
complished using the supervised discretization method
described in [4].

Training: building the model
The training stage uses a set of training documents for
which the author’s keyphrases are known. For each train-
ing document, candidate phrases are identified and their
feature values are calculated as described above. To reduce
the size of the training set, we discard any phrase that oc-
curs only once in the document. Each phrase is then
marked as a keyphrase or a non-keyphrase, using the actual

keyphrases for that document. This binary feature is the
class feature used by the machine learning scheme.

The scheme then generates a model that predicts the class
using the values of the other two features. We have experi-
mented with a number of different machine learning
schemes; Kea uses the Naïve Bayes technique (e.g [2]) be-
cause it is simple and yields good results. This scheme
learns two sets of numeric weights from the discretized
feature values, one set applying to positive (“is a key-
phrase”) examples and the other to negative (“is not a key-
phrase”) instances. An example model is described in Sec-
tion 3.

Extraction of new keyphrases
To select keyphrases from a new document, Kea deter-
mines candidate phrases and feature values, and then ap-
plies the model built during training. The model deter-
mines the overall probability that each candidate is a key-
phrase, and then a post-processing operation selects the
best set of keyphrases.

When the Naïve Bayes model is used on a candidate phrase
with feature values t (for TF×IDF) and d (for distance), two
quantities are computed:

P[yes] =
Y

Y N+
PTF×IDF [t | yes] Pdistance[d | yes] (1)

and a similar expression for P[no], where Y is the number
of positive instances in the training files—that is, author-
identified keyphrases—and N  is the number of negative
instances—that is, candidate phrases that are not key-
phrases. (The Laplace estimator is used to avoid zero prob-
abilities. This simply replaces Y and N by Y+1 and N+1.)

The overall probability that the candidate phrase is a key-
phrase can then be calculated:

p = P[yes] / (P[yes]+P[no]) (2)

Candidate phrases are ranked according to this value, and
two post-process steps are carried. First, TF×IDF (in its
pre-discretized form) is used as a tie-breaker if two phrases
have equal probability (common because of the discretiza-
tion).  Second, we remove from the list any phrase that is a
subphrase of a higher-ranking phrase. From the remaining
ranked list, the first r phrases are returned, where r is the
number of keyphrases requested.

XUSHUO
高亮

XUSHUO
高亮

XUSHUO
高亮

XUSHUO
高亮

XUSHUO
高亮

XUSHUO
高亮

XUSHUO
高亮



KEYPHRASE EXTRACTION EXA MPLE
To illustrate the Naïve Bayes modeling method, we exhibit
a model for keyphrase extraction that was learned in one
experiment, and show its application to a particular phrase.

Sample model
Table 2 shows the model. For this training set, TF×IDF was
discretized into five fixed levels, and first occurrence into
four levels. The discretization boundaries are given at the
top of Table 2.

Using this discretization, there are nine feature weights for
positive examples and nine for negative ones. For example,
PTF×IDF[1 | yes] is the proportion of positive examples that
have a discretized TF×IDF value of 1. The values learned
for these weights are shown in the middle of Table 2.

The final component of the learned model is the number of
positive and negative instances in the training set, shown at
the bottom of Table 2. These determine the prior probabil-
ity of a candidate phrase being a keyphrase, in the absence
of any other information.

Application of the model
As an example of keyphrase assignment, the phrase cut
elimination, with stem cut elim, appears 16 times in the
third paper of Table 1. The size of this paper is 5114 words;
the phrase first appears at word 130. There are 132 docu-
ments in the global corpus, and cut elim appears in just
one, but this paper is not in the global corpus, so these
counts are incremented by 1. This gives cut elim the feature
values TF×IDF = 0.0189, distance = 0.0254. After discreti-
zation, these become 4 and 3.

The a posteriori likelihoods of this phrase being in the yes
and no classes are calculated from Equation (1), and the
overall probability for it being a keyphrase is calculated
from Equation (2) as 0.0805. This makes it the fifth candi-
date phrase in the probability ordered list, so it will be re-

turned as a keyphrase provided five or more are requested.

The individual words cut and elim are also candidate
phrases. Although cut has the same probability as cut elimi-
nation, it is ranked higher because its (undiscretized)
TF×IDF is greater; thus it will also appear as a keyphrase.
On the other hand, elim will never be chosen as a key-
phrase, no matter how many are sought, because its prob-
ability is lower than that of its superphrase.

EVALUATION
We carried out an empirical evaluation of Kea using
documents from the New Zealand Digital Library. Our
goals were to assess Kea’s overall effectiveness, and also to
investigate the effects of varying several parameters in the
extraction process. We measured keyphrase quality by
counting the number of matches between Kea’s output and
the keyphrases that were originally chosen by the docu-
ment’s author. The following sections outline our experi-
mental methodology and report the results.

Methodology
Procedure
Kea was evaluated using the Computer Science Technical
Reports (CSTR) collection of the NZDL. From the 46,000
documents in this corpus, we chose 1800 where the author
had supplied keyphrases. From these 1800, we randomly
chose a test set of 500 documents, leaving 1300 as a pool
from which to select training documents. The large test set
reduces measurement error, so our results will closely ap-
proximate the expected values for any particular docu-
ment. Finally, a further set of documents were chosen at
random from the remainder of the CSTR as our global
corpus, used to build the document-frequency file.

Discretization table Feature Discretization ranges

1 2 3 4 5

TF×IDF < 0.0031 [0.0031, 0.0045) [0.0045, 0.013) [0.013, 0.033) ≥ 0.033
distance < 0.0014 [0.0014, 0.017) [0.017, 0.081) ≥ 0.081

Class probabilities Feature Values Discretization ranges

1 2 3 4 5

TF×IDF P[TF×IDF | yes] 0.2826 0.1002 0.2986 0.1984 0.1182
P[TF×IDF | no] 0.8609 0.0548 0.0667 0.0140 0.0036

distance P[distance | yes] 0.1952 0.3360 0.2515 0.2173
P[distance | no] 0.0194 0.0759 0.1789 0.7333

Prior probabilities Class Training instances Prior probability

yes 493 P(yes) = Y/(Y+N) = 0.0044

no 112183 P(no) = N/(Y+N) = 0.9956

XUSHUO
高亮

XUSHUO
高亮



We then carried out four experiments to determine:
• Kea’s overall effectiveness
• the effect of changing the size and source of the global

corpus
•  the effect of changing the number of training docu-

ments
• Kea’s performance using abstracts rather than full text

Results from each of these experiments are given below;
first, however, we describe our quality measures, and dis-
cuss the advantages and disadvantages of using author-
specified keyphrases as a standard.

Measures
We assess Kea’s effectiveness by counting the keyphrases
that were also chosen by the document’s author, when a
fixed number of keyphrases are extracted. We use this
measure instead of the more common information-
retrieval metrics of precision and recall for three reasons.
First, a single overall value is more easily interpreted than
two values. Second, precision and recall can be misleading,
for it is easy to maximize precision at the expense of recall
(by returning the single most promising candidate phrase),
or recall at the expense of precision (by returning all candi-
dates). Third, our measure fits well with the expected be-
haviour of end-users, who will likely ask for a certain num-
ber of keyphrases for a document. If required, however,
precision can be calculated by dividing our measure by the
number of phrases retrieved.

We chose to measure Kea against the choices of the docu-
ment’s author for several reasons: this method of evalua-
tion is simple, can be carried out automatically, and allows
the comparison of different extraction schemes. However,
there are several disadvantages to using author keyphrases
as a standard—primarily that authors do not always choose
keyphrases that best describe the content of their paper.
Authors might choose phrases to slant their work a certain
way, or to maximize its chance of being noticed by par-
ticular searchers. Also, keyphrases are often chosen hastily,
just before a document is finalized. Finally, one can argue
that authors are in any case poorly qualified to choose
phrases to describe their work for others.

This problem raises two issues. First, the variance in author
choices makes it more difficult for an automatic extraction
scheme to perform well. Second, Kea’s incorrect choices
(those that did not match an author choice) are not neces-
sarily poor keyphrases. A more revealing approach might
be to use human judges to independently assess the quality
of Kea’s phrases, without using the original author’s
choices at all. This approach, however, requires consider-
able resources even for a single experiment, and so we leave
this method for future studies.

Results
Overall effectiveness
Our first experiment assessed Kea’s overall effectiveness,
when extracting up to 20 keyphrases per test document.
This experiment used 50 training documents, the standard
500-document test set, and a global corpus of 100 docu-
ments. Selected results are shown in Table 3 below, and
illustrated in Figure 2.

Keyphrases extracted Average matches with author
keyphrases

5 0.93
10 1.39
15 1.68
20 1.88

Table 3 Overall performance

In Figure 2, the lowest line shows the average number of
correct identifications. The upper lines show three limits
on possible performance. The first shows how many key-
phrases the author assigned: clearly it is not possible for
any algorithm to do better than this using our measure of
success. The asymptote shows that the test set has an aver-
age of 5.4 author-assigned keyphrases per document. The
second line from the top indicates the number of key-
phrases that appear in the document’s text. No method of
keyphrase extraction (as opposed to assignment) can possi-
bly identify keyphrases that do not appear in the text. The
third gives the number of keyphrases appearing within the
candidate phrases (see Section 2.1).

Figure 2 thus illustrates where Kea loses ground. The dif-
ference between the two middle lines represents how many
keyphrases are not selected by the candidate selection proc-
ess. The difference between the bottom two lines represents
how much better the machine learning scheme could con-
ceivably do in finding the authors’ keyphrases from among
the candidates.

0

1

2

3

4

5

6

0 5 10 15 20

N
um

be
r 

of
 "

co
rr

ec
t"

 k
ey

ph
ra

se
s

Number of phrases output

assigned by author

assigned by Kea

appearing in text

appearing in candidate phrases

Figure 2 Overall performance

XUSHUO
高亮

XUSHUO
高亮



The error bars on the lowest line (which are so small as to
be barely visible) represent variance due to the choice of
training documents. If one considers the population of all
training sets of size 50, there is a 99% chance that the
population mean lies within the error bar. Using training
sets of only 50 documents represents the realistic situation
where there are not many documents available with known
keyphrases. Although the results for any given training set
will differ, we can be 99% sure that Figure 2 accurately
portrays the expected result over different training sets.

Effect of size and source of global corpus
We carried out a series of tests to determine how the size
and source of the global corpus affects performance. As
described in Section 2.2, the global corpus is used to build a
document frequency file used in TF×IDF calculations. We
were interested in the corpus’ size since a larger global cor-
pus will more closely approximate a phrase’s true fre-
quency in general use. We were also interested in the
source of the global corpus’ documents—in particular,
whether the similarity of these documents to the test
documents would affect performance.

To test the effect of the source, we built different global
corpuses from: an independent set of similar documents,
the training set, the training and test sets, the test set alone,
and a set of documents containing a different kind of mate-
rial. In our trials, no one global corpus significantly out-
performed the others.

To test the effect of global corpus size, we tested Kea using
corpuses of different sizes. For these trials, we used a
training set of 130 documents, and the standard 500-
document test set. All global corpuses were formed ran-
domly from the CSTR documents without author-assigned
keyphrases. As shown in Table 4 and in Figure 3, there is
little to be gained by increasing the size of the global corpus
beyond about ten documents, and after 50 documents,
there is no further improvement. However, the document-

frequency file is crucial for good results: without one, per-
formance drops off dramatically.

Documents in
corpus

Average # matches (5
extracted)

Average # matches
(15 extracted)

0 ? ?
1 0.674 1.307
5 0.738 1.445

10 0.822 1.560
50 0.884 1.644
100 0.868 1.644
1000 0.854 1.596

Table 4 Effect of varying global corpus size

Figure 3 plots the number of keyphrases matched against
the size of the global corpus. The error bars give 95% con-
fidence intervals for the number of correct keyphrases ex-
tracted from a test document, given the particular training
set.

Effect of training set size
Our third experiment investigated whether the number of
training documents (those with keyphrases identified) af-
fect performance. We were interested in the practical
problem of how many training documents are necessary
for good results. In this experiment, we use a standard
global corpus of 100 CSTR documents, and the standard
test set. We varied the size of the training set from 1 to 130
documents, and tested Kea’s performance with each set.

Our results (Table 5 and Figure 4) show that performance
improves steadily up to a training set of about 20 docu-
ments, and smaller gains are made until the training set
holds 50 documents. Figure 4 plots the number of cor-
rectly-identified keyphrases, when 5 and 15 phrases are
extracted, against the number of documents used for
training. The error bars show 99% confidence limits.

0

0.5

1

1.5

2

1 10 100 1000

N
um

be
r 

of
 "

co
rr

ec
t"

 k
ey

ph
ra

se
s

Number of documents in document-frequency file

5 phrases output

15 phrases output

Figure 3 Effect of number of documents used
when calculating TF×IDF

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

0 20 40 60 80 100 120

N
um

be
r 

of
 "

co
rr

ec
t"

 k
ey

ph
ra

se
s

Number of training documents

15 phrases output

5 phrases output

Figure 4 Performance against number of training files

XUSHUO
高亮



Training
documents

Average # matches
(5 extracted)

Average # matches
(15 extracted)

0 0.684 1.266
1 0.717 1.301
5 0.819 1.508
10 0.840 1.542
20 0.869 1.625
50 0.898 1.650
100 0.908 1.673

Table 5 Effect of varying training set size

These results indicate that good extraction performance
can be had with a relatively small set of training docu-
ments. In a real-world situation where a collection without
any keyphrases is to be processed, human experts need only
read and assign keyphrases to about 25 documents in order
to extract keyphrases from the rest of the collection.

Effect of document length
Our final experiment considered whether Kea’s perform-
ance suffers when it only uses the abstracts of documents to
extract keyphrases, and compares it to performance on the
full text. This experiment used the standard training, test-
ing, and global corpus sets, except that documents with no
abstract were ignored (leaving 110 training documents and
429 testing documents).

Table 6 shows the number of correct keyphrases extracted
using both the short and full documents. As expected, Kea
extracts fewer keyphrases from abstracts than from the full
document text.

Document length Average #
matches

(5 extracted)

Average #
matches

(15 extracted)
Full text 0.909 1.712
Abstracts 0.655 1.028

Table 6 Effect of varying document length

Figure 5 plots curves for the short document trial only. The
four solid lines, from top to bottom, indicate: the number
of keyphrases assigned by the author, the number appear-
ing in the shortened document, the number that appear in
the candidate list, and the number that are correctly iden-
tified by Kea. The dashed line is the number of correct key-
phrases identified when using the full document text. The
main reason for the reduced performance when using ab-
stracts seems to be that—not surprisingly—far fewer of the
author’s keyphrases appear in the abstract than can be
found in the entire document.

CONCLUSION
We have described and evaluated an algorithm for auto-
matically extracting keyphrases from text. Our results show
that Kea can on average match between one and two of the
five keyphrases chosen by the author in this collection.2  We
consider this to be good performance. Although Kea find
less than half the author’s phrases, it must choose from
many thousands of candidates; also, it is highly unlikely
that even another human would select the same set of
phrases as the original author.

Therefore, our next project is to leave the author’s phrases
behind and evaluate Kea’s phrases with a more robust
measure. We will use human judges to rate how well a set
of extracted keyphrases summarize a particular document.
Although this experiment will provide a more realistic as-
sessment, it is clear that some of Kea’s phrases are poor
regardless of the measure. These poor phrases are not easy
to weed out: the reason that garbage is a poor keyword (see
Table 1) is subtle from a computational viewpoint. There-
fore, we will also investigate techniques for determining
what makes a phrase reasonable from a human perspective.

At present, Kea’s performance is sufficient for the applica-
tions it was designed for: providing support for summa-
rizing, browsing, searching and clustering in cases where
manual keyphrase assignment is infeasible. It can and will
greatly assist designers and users of large document collec-
tions.

Kea is available from the New Zealand Digital Library pro-
ject (http://www.nzdl.org/).

                                                
2  The version of Kea described here is domain-
independent. Other experiments [5] show how perfor-
mance can be improved by incorporating a degree of do-
main dependence.

0

1

2

3

4

5

6

0 5 10 15 20

N
um

be
r 

of
 "

co
rr

ec
t"

 k
ey

ph
ra

se
s

Number of keyphrases

assigned by author

appearing in abstract text

appearing in candidate phrases

assigned by Kea

Figure 5 Number of correct keyphrases against num-
ber of phrases extracted

XUSHUO
高亮



ACKNOWLEDGMENTS
We would like to thank Peter Turney for sharing his
datasets, discoveries, and experiences.

REFERENCES

1. Brandow, R., Kitze, K. and Rau, L.R. “The automatic
condensation of electronic publications by sentence
selection.” Information Processing and Management, 31
(5).

2. Domingos, P. and Pazzani, M. (1997) “On the opti-
mality of the simple bayesian classifier under zero-one
loss. Machine Learning, 29 (2/3), 103-130.

3. Dumais, S. T., Platt, J., Heckerman D., and Sahami M.
(1998). “Inductive learning algorithms and represen-
tations for text categorization.” Proceedings of ACM-
CIK International Conference on Information and
Knowledge Management, pp 148-155

4. Fayyad, U.M. and Irani, K.B. (1993) “Multi-interval
discretization of continuous-valued attributes for clas-
sification learning.” Proc IJCAI’93,  1022-1027.

5. Frank, E., Paynter, G.W., Witten, I.H., Gutwin, C. and
Nevill-Manning, C.G. (1999) “Domain-specific key-
phrase extraction.” Submitted to IJCAI.

6. Gutwin, C., Paynter, G.W., Witten, I.H., Nevill-
Manning, C.G. and Frank, E. (1998) “Improving
browsing in digital libraries with keyphrase indexes.”
Technical Report, Department of Computer Science,
University of Saskatchewan, Canada.

7. Johnson, F.C., Paice, C.D., Black, W.J. and Neal, A.P.
(1993) “The application of linguistic processing to
automatic abstract generation.” J Documentation and
Text Management 1.

8. Jones, S. (1998) “Link as you type.” Working Paper
98/16, Department of Computer Science, University of
Waikato, New Zealand.

9. Kucera, H. and Francis, W.N. (1967) Computational
analysis of present-day American English. Brown Uni-
versity Press, Providence.

10. Kupiec, J., Pedersen, J. and Chen, F. (1995) “A train-
able document summarizer.” Proc SIGIR, ACM Press,
68–73.

11. Lovins, J.B. (1968) “Development of a stemming algo-
rithm.” Mechanical Translation and Computational
Linguistics, 11, 22-31.

12. Turney, P. (1999) “Learning to extract keyphrases
from text.” Submitted to J Information Retrieval.

13. Witten, I.H. (1999) “Browsing around a digital li-
brary.” Proc. Australasian Computer Science Confer-
ence, Auckland, New Zealand, 1–14.

XUSHUO
高亮

XUSHUO
高亮


