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ABSTRACT

Motivation: Chemical compounds like small signal molecules or
other biological active chemical substances are an important entity
class in life science publications and patents. Several representations
and nomenclatures for chemicals like SMILES, InChI, IUPAC or trivial
names exist. Only SMILES and InChI names allow a direct structure
search, but in biomedical texts trivial names and IUPAC like names
are used more frequent. While trivial names can be found with a
dictionary-based approach and in such a way mapped to their
corresponding structures, it is not possible to enumerate all IUPAC
names. In this work, we present a new machine learning approach
based on conditional random fields (CRF) to find mentions of IUPAC
and IUPAC-like names in scientific text as well as its evaluation and
the conversion rate with available name-to-structure tools.
Results: We present an IUPAC name recognizer with an F1 measure
of 85.6% on a MEDLINE corpus. The evaluation of different CRF
orders and offset conjunction orders demonstrates the importance
of these parameters. An evaluation of hand-selected patent sections
containing large enumerations and terms with mixed nomenclature
shows a good performance on these cases (F1 measure 81.5%).
Remaining recognition problems are to detect correct borders of
the typically long terms, especially when occurring in parentheses or
enumerations. We demonstrate the scalability of our implementation
by providing results from a full MEDLINE run.
Availability: We plan to publish the corpora, annotation guideline as
well as the conditional random field model as a UIMA component.
Contact: roman.klinger@scai.fraunhofer.de

1 INTRODUCTION AND RELATED WORK
Finding relevant information is one of the most important challenges
in our time. In particular in life science and chemical research a huge
amount of new publications, research reports and patents is produced
every year. For users of huge text corpora like MEDLINE, document
categorization, ranking and finding entity-related information is an
important help in their daily research and work life. The automated
identification of entities of interest in text in a domain and their
mapping to database entries strongly improves information retrieval,
information extraction and information aggregation. For such tasks
tools have been successfully developed in the last decades especially
for finding mentions of proteins and genes. Those provide basic
methods to extract e.g. protein–protein relations. For that field
of interest, the BioCreative competition (Hirschman et al., 2007)
provides an evaluation of state-of-the-art techniques on publicly
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available data sources. Dictionary-based systems allow a direct
mapping of the recognized entities to reference objects (e.g.
EntrezGene identifiers for genes). An inherent drawback of such
approaches, however, is the dependence on the quality and
completeness of the dictionary and the methods of the underlying
algorithm to recognize spelling variants and to resolve ambiguous
names.

Dictionary independent methods (rule-based systems as well as
machine learning-based system) are well suited to find names where
no comprehensive dictionary is available. An example for a rule-
based approach is to find mentions matching a given set of regular
expressions. Machine learning approaches are based on an annotated
training set from which statistical information can be obtained about
the inherent dependencies in the data. This extracted information
can then be applied on unseen data to classify word tokens, i.e. to
label parts of text with different classes. The best approaches in
the BioCreative sub task of gene mention recognition have an
F1 measure between 86% and 87% (Wilbur et al., 2007). From 21
submissions, 11 use conditional random fields (CRF), a machine
learning method based on undirected graphical models (Bishop,
2006) which leads to competitive results, in our hands 86.33%
F1 measure (Klinger et al., 2007b).

Finding mentions of chemical compounds in text is of interest
for several reasons. An annotation of the entities enables a search
engine to return documents containing elements of this entity class
(semantic search), e.g. together with a disease. This can be helpful
to find relations e.g. to adverse reactions or diseases. Mapping the
found entities to corresponding structures leads to the possibility
to search for relations between different chemicals. This enables a
chemist to search for similar structures or substructures and combine
the knowledge in the text with knowledge from databases or to
integrate other tools handling chemical information (e.g. solubility
or mass calculation).

Chemical names can be distinguished into different classes: to
deal with complex structures, different methods of nomenclature
are used, e.g. mentions of the sum formula or names according to
the Simplified Molecular Input Line Entry Specification (SMILES;
Weininger, 1988) or the successor of SMILES, the IUPAC
International Chemical Identifier (InChI). Because of a limited
readability of such specifications for humans, trivial names and the
nomenclature published by the International Union of Pure and
Applied Chemistry (IUPAC; McNaught and Wilkinson, 1997) is
commonly applied (Eller, 2006) in text. Also combinations of the
different types of names as well as abbreviations, especially of often
used substances, are in use.

Trivial names can be searched for with a dictionary-based
approach and directly mapped to the corresponding structure
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at the same time. For example, the dictionary-based named
entity recognition system ProMiner (Hanisch et al., 2005) uses a
DrugBank1 (Wishart et al., 2006) dictionary for the recognition of
drug names in MEDLINE abstracts (Kolářik et al., 2007). Other
systems use the drug dictionary from MedlinePlus2 (e.g. EbiMed;
(Rebholz-Schuhmann et al., 2007) for the recognition of drug
names.

For other representations of chemical structures like SMILES,
InChI or IUPAC names such an enumeration is only possible
for the most common substances. The full chemical space cannot
be enumerated. Several systems address that problem regarding
chemical entities with a variety of approaches.

Narayanaswamy et al. (2003) describe a manually developed set
of rules relying upon lexical information, linguistic constraints of
the English language and contextual information for the detection
of several entity classes. The reason for choosing this approach is
stated as the lack of an annotated corpus. The evaluation was done
on a small hand-selected corpus containing 55 MEDLINE abstracts
selected by searching for acetylates, acetylated and acetylation.
They found 158 chemical names from which 22 were ambiguous
and classified into different classes and 13 chemical parts with two
ambiguous ones. The F1 measure for the first is 90.86% (93.15%
precision, 86.08% recall). The latter has an F1 measure of 91.67%
(100% precision, 84.62% recall).

Similarly, (Kemp and Lynch, 1998) identify chemical names in
patent texts with handcrafted rules using dictionaries with chemical
name fragments. They claim to identify 97.4% from 14 855 specific
chemical names in 70 patent descriptions taken from documents
from the IPC class CO 7D. The false positive rate is reported to
be 4.2%.

The concept described by Anstein et al. (2006) for which the
preconditions are described by Reyle (2006) uses a grammar for the
analysis of fully specified (e.g. 7-hydroxyheptan- 2-one ), trivial (e.g.
benzene) and semi-systematic (e.g. benzene-1,3,5-triacetic acid) as
well as underspecified (e.g. deoxysugar) compound names. The
advantage of that approach is that the grammatical analysis can be
used as a basis for a conversion to the chemical structure. A possible
problem is the difficulty to recognize names not following the
specification to a certain degree as well as the completeness and
maintenance of a changing standard.

A molecular similarity search is used by (Rhodes et al., 2007)
to enable a user to ‘search for related Intellectual Property’ in
US patents based on a specified drawn molecule. They report to find
3 623 248 unique chemical structures from 4 375 036 US patents.
The absolute numbers of found patents for the top 25 drugs listed
by Humana (2005) are given.

The program developed by (Sun et al., 2007) focuses on finding
sum formulas like CH3(CH2)2OH in text using support vector
machines (Schölkopf and Smola, 2002) and CRFs (Lafferty et al.,
2001).

In the work of Corbett et al. (2007), first-order Hidden
Markov Models (Rabiner, 1989) implemented in the toolkit
LingPipe3 are combined with other methods for the identification
of chemical entities. The program finds e.g. structural classes, atoms

1http://redpoll.pharmacy.ualberta.ca/drugbank/
2U.S. National Library of Medicine (2007), http://mplus.nlm.nih.gov/
medlineplus/druginformation.html
3http://alias-i.com/lingpipe/

and elements, fragments, trivial names, SMILES and InChI as well
as IUPAC names. They give an inter-annotator F1 measure of 93%
for chemical names on their annotated corpus. The performance is
evaluated on different corpora, recall rates are between 69.1% and
80.8% and precision rates beween 64.1% and 75.3% (Corbett and
Murray-Rust, 2006). A seperate evaluation of the included named
entity recognition modules from the toolkit LingPipe results in an
F1 measure of 74% (Corbett et al., 2007). To our knowledge, their
implementation—the open source program Oscar34 (Open Source
Chemistry Analysis Routines; Corbett, 2007)—is the only software
available to the academic community.

We prefer to have a method identifying IUPAC and IUPAC-like
names only and to have additional approaches to recognize other
chemical name classes (e.g. brand names or elements): IUPAC and
IUPAC-like names can be recognized based on their morphological
structure with higher performance than with methods based on
dictionaries (Kolářik et al., 2008). We therefore introduce a system
for the recognition of IUPAC and IUPAC-like names while trivial
names are found with a dictionary approach not described here.
These IUPAC-like terms do not only include correct IUPAC names
but also names not following the nomenclature strictly. This enables
a higher recall regarding mentioned chemicals, which is important
for document retrieval purposes.

In addition to the correct recognition of IUPAC and IUPAC-
like names, the aim is to transform these names using name-to-
structure converters to allow the usage of chemical tools on the
extracted data. Therefore enumerations have to be detected with
all parts while modifying tokens (e.g. substitutes, analogs) have
to be tagged separately (cf. Fig. 1). We use a CRF approach
and present our development of a training corpus as well as
our experiences regarding inter-annotator agreement in comparison
to the work of Corbett et al. (2007). Next to the training
corpus we describe test corpora especially on MEDLINE and on
patents.

Additionally, to the presentation of the results an exhaustive
analysis of the influences of different CRF orders and offset
conjunctions is shown and the impact of the different feature sets
on the results are evaluated and discussed.

2 METHODS

2.1 Overview
We apply a CRF to build a model for finding IUPAC and IUPAC-related
MODIFIER entities. A training corpus has been annotated by two
independent annotators and the inter-annotator agreement is discussed in
Section 2.3. The model selection is performed by bootstrapping (Efron
and Tibshirani, 1993) and evaluated on two independent test corpora, one
consisting of sampled abstracts from MEDLINE, the other one on hand
selected paragraphs from bio-chemical patents. We analyze the use of name-
to-structure converters as a basis of a possible normalization, a mapping of
the found entities to a unique structure.

2.2 Entity types
The entities in which we focus are IUPAC and MODIFIER mentions.
As described, chemical entities in general are named following
different nomenclatures which are also combined by the authors of
biomedical texts. Only concentrating on correct IUPAC terms is not

4http://oscar3-chem.sourceforge.net
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Fig. 1. Example abstract with tagged entities (PMID 9240357; Guzikowski et al., 1997). IUPAC entities are depicted in red while MODIFIER entities are
shown in blue.

sufficient, so we define a IUPAC entity to be a chemical substance
mentioned in a IUPAC-like manner. Additionally to correct IUPAC
names, it includes IUPAC names in which a part is abbreviated,
fragments and group names. In Figure 1 an example abstract from
MEDLINE with annotations of the two entity classes is shown.
Next to full names like ‘1,2,3,4-tetrahydronaphthalene-1-carboxylic
acid’ or ‘4-[[(3-chlorophenyl)amino]methyl]-6,7-dihydroxychromen-
2-one’, fragments, e.g. in enumerations, are tagged separately
like ‘acridine-4-’ and ‘phenazine-1-carboxamide’ in ‘…both the
acridine-4- and ‘phenazine-1-carboxamide series…’ or ‘3α-[bis(4-
fluoro-’ and ‘4-chlorophenyl)methoxy] tropane’ in ‘…N- and
2-substituted-3α-[bis(4-fluoro- or 4-chlorophenyl)methoxy]tropane…’.5

The alternative to the separate way of annotating parts in enumerations
would have been an annotation including the connecting word (in that
example ‘or’). This is not meaningful because parts of names are sometimes
divided by long text passages. With our kind of annotation, a possible
enumeration resolution of the found parts in the text is prepared.

The MODIFIER entity describes similarities to a mentioned substance like
in ‘[IUPAC-entity] analogues’or ‘[IUPAC-entity] modifier’or ‘3-substituted-
[IUPAC-entity]’.

2.3 Corpus generation and inter-annotator agreement
Three main corpora are generated for building the model and evaluating
our approach following a developed annotation guideline. A training corpus
consisting of MEDLINE abstracts (abbreviated as TrainM ), a test corpus
containing MEDLINE abstracts (TestM ) and a test corpus made up of parts
of patents (TestP).

The training corpus is built in two steps. First, a preliminary corpus
(abbreviated as Trainpr) is built in the same manner as described by Friedrich
et al. (2006). For that, in the BioCreative training corpus (Hirschman et al.,
2007), the gene and protein names are replaced by randomly selected correct
IUPAC names from PubChem (NCBI, 2007). This leads to an artificial corpus
with 15 000 sentences with 1 216 341 tokens. It includes 24 325 entities. On
that corpus a CRF is trained and used for tagging 10 000 sampled abstracts
from MEDLINE. From these, 463 abstracts are selected which include
161 591 tokens in 3700 sentences6 with 3712 IUPAC and 1039 MODIFIER
entities.

For evaluation of the system, 1000 MEDLINE records with 124 122
tokens in 5305 sentences are sampled equally distributed from full
MEDLINE containing 151 IUPAC and 14 MODIFIER entities resulting in
the corpus TestM .

5The colors here show the entity: red for IUPAC entities, blue for MODIFIER
entities
6Number of sentences is detected with the JulieLab sentence splitter
(http://www.julielab.de/, Tomanek et al., 2007).

Passages from 26 patents dealing with chemical processes were hand
selected according to occurring enumerations of chemicals, especially using
different and mixed nomenclatures to detect possible problems. These
paragraphs consist of 4309 words in 152 sentences with 411 IUPAC entities
forming the corpus TestP .

The training corpus is annotated by two independent annotators. An
assessed inter-annotator F1 measure for the IUPAC entity is relatively low
with 78% [in contrast to 93% claimed by Corbett et al. (2007)]. One
reason for the difference in comparison to Corbett and his colleagues is our
differentiation of the IUPAC entity to other chemical mentions, which is not
always easy to decide while all chemical mentions in the corpus generated
by Corbett are combined in one entity. Another reason are the different
experience levels of our annotators: while the first annotator collaborated on
the development of the annotation guideline and annotated several corpora,
the second annotator based his annotations directly on the provided guideline.

For building the conclusive training corpus both annotations are combined
by an independent person. The F1 measure between the resulting training
corpus (TrainM ) and the first-annotated corpus is 94%.

2.4 Conditional random fields
CRFs (Lafferty et al., 2001; McDonald and Pereira, 2005) are a family
of probabilistic, undirected graphical models for computing the probability
P(�y|�x) of a possible label sequence �y= (y1,...,yn) given the input sequence
�x= (x1,...,xn). In the context of named entity recognition this observation
sequence �x corresponds to the tokenized text. This is the sequence of tokens
which is defined by a process called tokenization—splitting the text at white
space, punctuation marks and parentheses. A straightforward idea for the
tokenization of IUPAC names is to keep the whole name together to use the
sheer length for their identification. That is not possible because of leading
and successive brackets and other symbols as well as often used wrong
white spaces (based on e.g. converted line breaks). So we use a very fine
tokenization, also splitting at all number-letter changes in the text.

The label sequence is encoded in a label alphabet similar to L=
{I-<entity>,O,B-<entity>} where yi =O means that xi is not an entity, yi =
B-<entity> means that xi is the beginning of an entity and yi = I-<entity>
means that xi is the continuation of an entity. In our case we use the alphabet

L={O,B-IUPAC,I-IUPAC,B-MODIFIER,I-MODIFIER}
as described in Section 2.2. An example for an observation sequence with a
label sequence is depicted in Figure 2.

A CRF in general is an undirected probabilistic graphical model

P(�y|�x)= 1

Z(�x)

n∏
j=1

�j(�x,�y) (1)

where �j are the different factors given through an independency graph
like in Figure 3 (Kschischang et al., 2001). These factor functions combine
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Fig. 2. Example for observation and label sequence for the text snippet:
‘…of cyclohepta-1,3-diene …’ after tokenization.

different features fi of the considered part of the text and the label sequence.
We mainly use morphological features of the text tokens for every possible
label transition.7 A subset of the used features is depicted in Table 1. They
usually have a form similar to

fi
(

yj−1,yj,�x,j
)
=
⎧⎨
⎩

1, if yj−1 =B-IUPAC and yj = I-IUPAC
and xj starts with a capital letter

0, otherwise.

The feature set used in our approach is described in Section 2.4.1.
A special case of the general CRF, in fact the one shown in Figure 3, is

the linear-chain CRF where the factors are given in the form

�j(�x,�y)=exp

(
m∑

i=1

λi fi
(

yj−1,yj,�x,j
))

(2)

so that the CRF can be written as

P(�y|�x)= 1

Z(�x)
·exp

⎛
⎝ n∑

j=1

m∑
i=1

λi fi
(

yj−1,yj,�x,j
)⎞⎠ . (3)

The normalization to [0,1] is given by

Z(�x)=
∑
�y∈Y

exp

⎛
⎝ n∑

j=1

m∑
i=1

λi fi
(

yj−1,yj,�x,j
)⎞⎠ . (4)

Here Y is the set of all possible label sequences.
To compute the normalization factor, the forward-backward algorithm

known from Hidden Markov Models (Rabiner, 1989) can be incorporated.
Optimization of the parameters (training) can be done by applying the
limited-memory Broyden–Fletcher–Goldfarb–Shanno algorithm (L-BFGS;
Nocedal, 1980) on the convex function L(T ) with the training data T :

L(T )= logP(�y|�x)).

These algorithms can also be used in CRF with a higher order, given by

P(�y|�x)= 1

Z(�x)
·exp

⎛
⎝ n∑

j=1

m∑
i=1

λi fi
(

yj−q+1,...,yj,�x,j
)⎞⎠ (5)

where q is the order of the CRF (cf. Fig. 4).
Our own implementation of the named entity recognizer for IUPAC terms

is based on MALLET (McCallum, 2002), a widely used and successfully
applied system for linear-chain CRF. A more detailed description of these
models and their relation to other graphical models is e.g. given by Klinger
and Tomanek (2007).

2.4.1 Feature set Many of the evaluated features are extracted by standard
methods, especially the morphological ones. Some of them are shown in
Table 1. Next to these commonly used features we incorporate special
IUPAC-related features. These are the membership of a token to a list of
often used prefixes and suffixes of length four in IUPAC names or a list of
typical last tokens of the names. These lists are extracted from all IUPAC
names mentioned in the data available from PubChem (NCBI, 2007).

The list of prefixes of length 4 has 714 members, the list of suffixes of
the same length has 661 members. Another list includes 300 suffixes of the

7In the I,O,B-format like mentioned above for the existence of one entity
there are eight possible transitions: B→B, O→O, I → I , B→ I , I →B,
I →O, B→O and O→B.

Table 1. Features used in the CRF

Name Explanation

Static morphol. features Reg.Ex.
All Caps [A-Z]+
Real Number [-0-9]+[.,]+[0-9.,]+
Is Dash [- – — −]
Is Quote [„ “ ” ” ‘ ’]
Is Slash [\ /]

Autom. generated features
Autom. Prefixes/Suffixes Automatic generation of a feature for every

token: match that prefix or suffix (length 2)
Bag-Of-Words Automatic generation of a feature for every

token: match that token

Spaces
Spaces_left white space preceding token
Spaces_right white space following token

Lists
Prefix/Suffix lists Prefixes and suffixes (length 4) of intermediate

or last words generated from IUPAC names
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y
t y

t+1 y
t+2 y

t+3

y
t y
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Fig. 3. First-order linear-chain CRF.
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Fig. 4. Second-order linear-chain CRF.

last tokens of IUPAC names to improve the detection of the end of a IUPAC
name. The general idea of these lists is to provide the system with a possibility
to generalize in excess of the training data. Another feature usually not used
in the context of other entities is the specification of a token being preceded
or succeeded by white space. This is important especially in enumerations
or abbreviations of IUPAC names or trivial names to separate them from
each other, in particular with reference numbers like shown in Figure 1. This
feature is necessary due to the need of a fine tokenization.

Additionally, we use the so-called offset conjunction (OC) that adds
features of the preceding and succeeding tokens for every token,
incorporating contextual information to the token to be labeled.

2.5 Conversion of IUPAC names to structures
To normalize the found names, one solution is to convert them to a structure
representation. Several tools have been developed for that task.
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Eigner-Pitto et al. (2007) show a short evaluation of three commercial
tools. One is LexiChem8 (OpenEye, 2007) by OpenEye, a product capable
of conversions from IUPAC names as well as other names to structures and
vice versa. Another program is ACDName by ACDLabs, which generates
chemical structures from systematic names, derivatives, semi-systematic
and trivial names as well as incorrect names, not strictly following the
nomenclature (ACDLabs, 2007), but it focuses more on correct names
than the program Name=Struct by CambridgeSoft (CambridgeSoft, 2007;
Eigner-Pitto et al., 2007).

We use the open source converter included in Oscar3, called Opsin,9

the only software to our knowledge, which is freely available for academic
evaluation purposes. It converts names to the Chemical Markup Language
(CML, Murray-Rust (1997)) which we translate to SMILES using the
Chemistry Development Kit10 (CDK; Steinbeck et al., 2003).

3 RESULTS
In a first step a CRF is trained on the preliminary, tweaked
corpus Trainpr mentioned in Section 2.3 and evaluated by 50-fold
bootstrapping. The result is an F1 measure of 97.92% (98.08%
precision, 97.76% recall) with a first-order CRF with first-order
offset conjunction and the same parameter set as described in
Section 3.1. These results are comparable to those published by
Friedrich et al. (2006). Evaluating this model on the annotated
MEDLINE training corpus TrainM shows a low F1 measure
(with 19.5%) and 38.4% recall. The performance on the sampled
MEDLINE test corpus TestM is even worse with 1.1% F1 measure
and a recall of 29.1%. These results show that there is a fundamental
difference in tagging the tweaked corpus Trainpr (which seems to be
simple, considering the F1 measure) and real world texts (as TrainM
and TestM ). The analysis of the different corpora shows two main
problems: On the one hand, only correct IUPAC names are included
in Trainpr, but fragments occur frequently in real text. On the other
hand, a big problem are missing negative examples in the tweaked
training data representing what is not a IUPAC name: nearly all
isolated numbers, single letters, expressions in or around brackets
are found wrong.

Based on the experiences on the tweaked training corpus Trainpr, a
CRF is trained on the annotated training corpus based on MEDLINE
abstracts TrainM using a selected parameter set. The evaluation of
the different parameters is given.

3.1 Parameter selection
For model selection, the impact of the following parameters of the
CRF are evaluated by applying 30-fold bootstrapping on the training
set TrainM :

• features representing the text like Bag-Of-Words or
morphological features (cf. Table 1),

• the order of the CRF and

• the order of the offset conjunction.

The feature set of the system with the best performance consists
of automatically added features based on Bag-Of-Words as well as
Autom. Prefixes/Suffixes of length two.Additionally, the membership
to Prefix/Suffix lists containing prefixes or suffixes of length four

8http://www.eyesopen.com/products/toolkits/lexichem.html
9Version of October 11, 2006, http://oscar3-chem.sourceforge.net

10Version 1.0.1 of June 26, 2007, cdk.sourceforge.net/

of last or intermediate tokens from IUPAC names is considered.
From the set of static morphological features, All Caps, Real
Number, Is Dash, Is Slash and Is Quote are used. The Spaces features
to determine if the token is preceded or succeeded by white space
is also included. Many other features, mainly from the field of gene
and protein recognition were also tested, e.g. mapping the token
to regular expressions representing greek letters, combinations of
alpha-numerical symbols, natural numbers, etc. For lists of different
features see McDonald et al. (2004), McDonald and Pereira (2005),
Settles (2005) and Klinger et al. (2007a,b).

To evaluate the impact of the different features we omit one from
the best feature set in several experiments (Fig. 5) and train models
only with small feature sets (depicted in Fig. 6). The automatically
generated features Bag-Of-Words and Autom. Prefixes/Suffixes have
the highest impact on the performance together with the Spaces
feature. Especially the last one is essential to obtain good results with
impacts between 6.5% (CRF 2, OC 2) and 13.64% (CRF 1, OC 0).
In contrast, the static morphological features and the Prefix/Suffix
lists bring nearly no loss omitting them and low results when used as
the only feature. Nevertheless, together with the feature Spaces, the
results are surprisingly high (70% F1 measure). Interesting is that
using only Autom. Prefixes/suffixes or Bag-Of-Words together with
the Spaces feature and CRF order 3 and offset conjunction order 2
results in an F1 measure of 76.03% or 79.31%, respectively.

We evaluate different configurations of the features with different
orders of offset conjunction (adding context in the form of features
of the last p and next p tokens, where p is the order of the offset
conjunction) as well as the order of the CRF, which includes
information from the last q labels (q is the order of the CRF).
The results of some of the features for different orders of offset
conjunction and CRF can also be seen in Figure 5. The importance
of the different features is nearly the same for all the different orders.
The divergence in the results is high for different feature sets, but it
is also very important to have the context information provided by
the offset conjunction. The best F1 measure can be obtained with
an offset conjunction of order 2 and a CRF order of 2 or 3. The
difference between a CRF without an offset conjunction (i.e. order
0) to a CRF with order 1 offset conjunction are much higher than
between order 1 and order 2 offset conjunctions. The increase of the
order comes along with a high increase in the number of weights
λi [compare to Equation (2) and (3)]. We have (for the CRF with
order 3) 119 884 weights without an offset conjunction, 315 377 with
an offset conjunction order of 1 and 521 179 weights with an offset
conjunction order of 2. This corresponds to the training and tagging
durations depicted in Figure 7.

Inspecting the tagging errors, we find that especially boundary
errors at the end or at the beginning of the name are more frequent
for a lower order of the offset conjunction. Other taggings that
can be correctly identified with an offset conjunction order of 2
are formulations like ‘… through the 7- or 12-methylene carbon
with …’ where the high context information is necessary to classify
‘7-’ correctly. A similar example is ‘… 2,3-substituted …’ with a
tagging of ‘2,3’ as IUPAC with an offset conjunction of 1 but
a correct result with an offset conjunction of 2.

3.2 Evaluation of the named entity recognition
Using the best configuration identified in the previous section,
the resulting model is evaluated on the sampled MEDLINE test
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different orders p of the offset conjunction (given as OC p). The best results were obtained with the feature set presented in Table 1. For more details see
Sections 2.4.1 and 3.1.
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between Figs 5 and 6.)

corpus TestM . In Figure 7 different orders of the CRF and the
offset conjunction together with tagging and training durations
are depicted. Similar to the results estimated with bootstrapping
on the training corpus TrainM , highest performance is obtained
with the most context information included by a CRF order of 3
and an offset conjunction order of 2. The F1 measure for IUPAC
entities is 85.6% with a precision of 86.5% and a recall of 84.8%.
The MODIFIER entities are found with an F1 measure of 84.6%
(91.7% precision and 78.6% recall). Higher orders have not been
applied because of prohibitive training durations. However, it can
be seen that our best result is obtained at the expense of a high
training time and, what is more important, on a higher tagging
time of 307 s then other configurations of the CRF. For tagging a
higher amount of data like the full MEDLINE database one could
prefer to use a faster configuration like the one with order 2 and
offset conjunction of 1 which only takes 215 s for tagging the test
corpus. The F1 measure for IUPAC entities is lower with 77.7%,
but the recall is nearly on the same level with 82.1% (MODIFIER:
55% precision, 78.6% recall). It can be concluded, that there is a
trade-off between tagging time and performance, so it depends on the
application which configuration should be preferred. The analysis
of the errors show frequent problems in the recognition of short

chemical names. On the one hand, chemical names are recognized
by the system which are not specified as IUPAC-like. On the
other hand, short names, similar to trivial names, specified as
IUPAC-like by the annotators are most frequently unrecognized
by the system. Nearly 50% of the other false positive errors are
boundary errors. In addition, names morphological similar to IUPAC
names like enzymes (e.g. ‘2-phospho-D-glyceratehydro-lyase’ or
‘pyruvate O2-phosphotransferase’) are detected as false positive
matches.

Applying the best system trained on the MEDLINE training
corpus, TrainM , for tagging the patent test corpus, TestP , shows
a decrease in F1 measure in comparison to the MEDLINE test
corpus TestM due to the bias of hand selecting difficult paragraphs
instead of sampling from a set of sentences or text snippets. We
get an F1 measure of 81.5% with a precision of 77.2% and a recall
of 86.4%.

3.3 Annotation of full MEDLINE
We performed a run of the best CRF model on the full MEDLINE
with 16 848 632 MEDLINE article entries (version as of July 13,
2007). In these entries, we have 8 975 073 abstracts. We tag titles and
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Fig. 7. Results on the sampled MEDLINE corpus TestM with different orders
q of the CRF (given as order q) and orders p of the offset conjunction
(given as OCp). The upper chart shows the F1 measures for the different
configurations, the lower one the tagging and training durations.

abstracts, altogether 2.2×109 tokens, in which there are 1 715 263
IUPAC entities in 875 102 MEDLINE database entries. The tagging
is performed on a computer cluster using 48 machines with two
Opteron AMD double core processors with 2.6 GHz and 8 GB main
memory on each machine in 76.65 h (3.19 days). The operating
system is Suse Linux Enterprise Server 9 (x86 64) with the Sun
N1 Grid Engine 6.

From the found IUPAC entities, only 142 181 could be
transformed to a structure (16.24%). The top 15 found terms from
MEDLINE are shown in Table 2, the top 5 of the converted structures
in Table 3 together with the most often used terms which lead to
the normalization. To get an upper bound of convertible IUPAC
names, we sample 100 000 correct names from data provided by
NCBI (2007). From these, 30 028 (30%) are converted to structure
information by Opsin.

4 SUMMARY AND DISCUSSION
In this article, we present our approach of finding IUPAC-like
terms in text with CRF. We demonstrate that our IUPAC recognizer
identifies entities with an F1 measure of 86.5% on a sampled
independent test corpus built from MEDLINE. This corpus gives
an estimation for all available abstracts from that database. These
results show that restricting the recognition to the special class
of IUPAC-like terms instead of all mentions of chemical names
as focused on in Oscar3 (Corbett et al., 2007) increases the
performance.

Using a tweaked corpus with correct IUPAC names shows that
incorporating only complete IUPAC names in the training corpus
is not sufficient. Obviously, the challenge is to recognize fragments
and parts of IUPAC names. An error analysis of the final system
on MEDLINE shows that boundary problems and the recognition
of shorter chemical names lead to the main performance loss. This
may be founded in ambiguities in the training data regarding these
names and should be considered in a further extension of the
training corpus. Preliminary results on an extended annotation of

Table 2. Top 15 found terms with their number of occurrences

Frequency Name

16811 N-methyl-D-aspartate
15275 5-hydroxytryptamine
11690 5-fluorouracil
9001 6-hydroxydopamine
7023 glucose-6-phosphate
6685 N-ethylmaleimide
5932 N-acetylcysteine
5178 12-O-tetradecanoylphorbol-13-acetate
5032 methyl
4742 N-acetylglucosamine
4311 benzo[a]pyrene
4164 3-methylcholanthrene
3991 4-aminopyridine
3931 2,3,7,8-tetrachlorodibenzo-p-dioxin
3979 5-hydroxyindoleacetic acid

short names show an increase of precision to 91.4% (Kolářik et al.,
2008).

When the IUPAC recognizer is applied to a hand-sampled patent
corpus containing long enumerations and mixtures of different
chemical nomenclatures the drop in performance is unexpectedly
low with an F1 measure of 81.5%.Apparently, the loss of F1 measure
in comparison to the MEDLINE corpus is due to a loss of precision
rather then recall. Typical problems are finding the right borders of
the chemical names in enumerations. From these results we cannot
generalize that it is harder to find IUPAC names in patents than in
abstracts.

In the feature evaluation we show that automatically generated
features like Bag-of-Words and Autom. Prefixes/Suffixes together
with Space information are the most important features influencing
the performance of the system. The usage of combinations of these
features alone e.g. Space together with prefixes and suffixes result
in an F1 measure of 76.03%. In contrast, the static morphological
features which are usually very important for a good generalization
(together with other morphological features), in particular on the
entity class of genes and proteins (Klinger et al., 2007b) do not have
such a high impact here. Remarkably, the Prefix/Suffix lists (used
for generalization purposes) appear to be of very low importance
indicated by nearly no loss when left out. When used as the only
feature, no positive result can be obtained. However, when combined
with the feature Spaces, the results are surprisingly high (70.71%
F1 measure).

Higher orders of the CRF in combination with high order offset
conjunctions lead to the best results observed (F1 measure 85.6%)
on the MEDLINE test corpus with an CRF order 3 and an offset
conjunction of 2. On this corpus also the direct dependency of
training and labeling durations to the orders of CRF and offset
conjunction are shown (cf. Fig. 7).

Despite of the analysis given here for IUPAC entities, the
open question remains, in which cases a representation of context
information on the labels should be preferred in comparison to
a representation of context information in the text, in form of
features, used here by incorporating offset conjunction. To our
knowledge, no deeper analysis is published about that topic so
far. Our own experiments with different orders of CRF and offset
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Table 3. Top 5 found converted structures [applying Opsin and CDK, drawn
with Marvin (ChemAxon, 2007)] with their frequency and the frequency of
occurrences of the top 3 terms which lead to the SMILES string

Frequency SMILES and example names Termfreq.

4099 NC1=CC=NC=C1
4-aminopyridine 3991
4-amino-pyridine 60
4-Aminopyridine 36

NH2N

3770 OCCS
2-mercaptoethanol 3696
2-mercapto-ethanol 47
2-Mercaptoethanol 19

OH
HS

2799 C1=NC2=NC=NC(=C2(N1))S
6-mercaptopurine 2766
6-Mercaptopurine 20
6-mercapto-purine 7

NNNNNNNNNN

NNNNN
NHNHNHNHNH

SHSHSHSHSH

2607 CN1CCC(=CC1)C2=CC=CC=C2
1-methyl-4-phenyl-1,2,3,6-
tetrahydropyridine

2416

1-Methyl-4-phenyl-1,2,3,6-
tetrahydropyridine

170

methyl-4-phenyl-1,2,3,6-tetrahydropyridine 10

CH3N

2457 OC=1C=CC(=CC=1[N+](=O)[O-
])[N+](=O)[O-]
2,4-dinitrophenol 2383
2,4-Dinitrophenol 53
(2,4-dinitrophenol 11

OH

O

OO

O
N+N+

conjunction in the field of gene and protein names showed that with
higher orders the results tend to get worse, probably because of more
needed training data when more complex dependencies are modeled
(data not shown here).

In a final test, the full MEDLINE was labeled showing the
scalability of the implementation. The highest frequency (without
normalization) is almost 17 000 mentions of one term (Table 2). A
conversion of the names to its corresponding structure show that only
a minor part (below 20%) can be processed (without evaluating the
correctness of the conversion). From the 15 most frequent chemical
names only one can be converted (4-aminopyridine; cf. Table 3).

Even from correct names provided by the NCBI in the database
PubChem, only 30% can be converted. Unfortunately, it is not
allowed to evaluate the conversion rate of the commercial tools
for academic applications. Difficulties in the name to structure
conversion are mixed nomenclatures and formally incorrect IUPAC
and chemical names instead of correct nomenclature. We conclude
that name-to-structure conversion in its current form seems to be a
persistent scientific challenge.

In the future it is necessary to combine different existing tools
and programs to be developed which find mentions of trivial names,
formulas, IUPAC names, InChI, SMILES, group names, etc. and
determine the intersection in their results and enable them also
to find combined terms (e.g. in which part of the names follows
the nomenclature of SMILES and another part follows IUPAC
nomenclature). For that purpose, a representative, comprehensive
test corpus including all these entities has to be developed.

Another goal is to combine the knowledge in drawn structures
with the information in text, using the results provided by
tools like chemOCR (Algorri et al., 2007; Zimmermann et al.,
2005) which converts drawn structures into computer interpretable
representations.
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Kolářik,C. et al. (2008) Chemical names: terminological resources and corpora
annotation. In Workshop on Building and evaluating resources for biomedical text
mining (6th edition of the Language Resources and Evaluation Conference).

Kschischang,F. et al. (2001) Factor graphs and the sum-product algorithm. IEEE T.
Inform. Theory, 47, 498–519.

Lafferty,J.D. et al. (2001) Conditional random fields: probabilistic models for
segmenting and labeling sequence data. In Proceedings of the Eighteenth
International Conference on Machine Learning (ICML 2001). Morgan Kaufmann
Publishers, San Francisco, CA, USA, pp. 282–289.

McCallum,A.K. (2002). MALLET: a machine learning for language toolkit. Available
at http://mallet.cs.umass.edu (last accessed May 5, 2008).

McDonald,R.T. et al. (2004) An entity tagger for recognizing acquired genomic
variations in cancer literature. Bioinformatics, 20, 3249–3251.

McDonald,R. and Pereira,F. (2005). Identifying gene and protein mentions in text using
conditional random fields. BMC Bioinformatics, 6 (Suppl. 1) (S6).

McNaught,A.D. and Wilkinson,A. (1997) Compendium of Chemical Terminology – the
Gold Book. Blackwell Science, Oxford, UK.

Murray-Rust,P. (1997) Chemical markup language: a simple introduction to structured
documents. World Wide Web J., 2, 135–147.

Narayanaswamy,M. et al. (2003) A biological named entity recognizer. In Proceedings
of the Pacific Symposium on Biocomputing. pp. 427–438.

NCBI (2007) Pubchem data. Online. Available at ftp://ftp.ncbi.nlm.nih.gov/pubchem/
Compound/CURRENT-Full/XML/ (last accessed date September 5, 2007).

Nocedal,J. (1980) Updating Quasi-Newton matrices with limited storage. Math.
Comput., 35, 773–782.

OpenEye (2007) Lexichem. Software. Available at http://www.eyesopen.com/products/
toolkits/lexichem.html (last accessed date December 18, 2007).

Rabiner,L.R. (1989) A tutorial on hidden Markov models and selected applications in
speech recognition. Proc. IEEE, 77, 257–286.

Rebholz-Schuhmann,D. et al. (2007) Ebimed – text crunching to gather facts for
proteins from medline. Bioinformatics, 23, 237–244.

Reyle,U. (2006) Understanding chemical terminology. Terminology, 12,
111–136.

Rhodes,J. et al. (2007) Mining patents using molecular similarity search. In Proceedings
of the Pacific Symposium on Biocomputing, Vol. 12. pp. 304–315.

Schölkopf,B. and Smola,A.J. (2002) Learning with Kernels: Support Vector
Machines, Regularization, Optimization, and Beyond: Support Vector Machines,
Regularization, Optimization and Beyond (Adaptive Computation and Machine
Learning). The MIT Press, Cambridge, MA.

Settles,B. (2005) ABNER: an open source tool for automatically tagging genes, proteins
and other entity names in text. Bioinformatics, 21, 3191–3192.

Steinbeck,C. et al. (2003) The chemistry development kit (cdk): an open-source
java library for chemo- and bioinformatics. J. Chem. Inf. Comput. Sci., 43,
493–500. Available at cdk.sourceforge.net/ (last accessed date December 18,
2007).

Sun,B. et al. (2007) Extraction and search of chemical formulae in text documents on
the web. In Proceedings of the International World Wide Web Conference. Banff,
Alberta, Canada, pp. 251–260.

Tomanek,K. et al. (2007) A reappriasal of sentence and token splitting for life science
documents. In Proceedings of the 12th World Congress on Medical Informatics.
Available at http://www.julielab.de/ (last accessed date December 16, 2007).

U.S. National Library of Medicine (2007) Medlineplus. Available at http://www.
nlm.nih.gov/medlineplus/druginformation.html (last accessed date September 1,
2008).

Weininger,D. (1988) Smiles, a chemical language and information system. 1.
introduction to methodology and encoding rules. J. Chem. Inf. Comput. Sci., 28,
31–36.

Wilbur,J. et al. (2007) Biocreative 2. gene mention task. In Proceedings of the Second
BioCreative Challenge Evaluation Workshop. Centro Nacional de Investigaciones
Oncologicas, CNIO, Madrid, Spain, pp. 7–9.

Wishart,D.S. et al. (2006) Drugbank: a comprehensive resource for in silico drug
discovery and exploration. Nucleic Acids Res., 34, D668–D672. Available
at http://redpoll.pharmacy.ualberta.ca/drugbank/ (last accessed date July 16,
2007).

Zimmermann,M. et al. (2005) Combating illiteracy in chemistry: towards computer-
based chemical structure reconstruction. In Proceedings of the 1st German
Conference on Chemoinformatics. Goslar, Germany.

i276


	Detection of IUPAC and IUPAC-like chemical names
	Roman Klinger, Corinna Kolárik, Juliane Fluck, Martin Hofmann-Apitius and Christoph M. Friedrich
	1 Introduction and Related Work
	2 Methods
	3 Results
	4 Summary and Discussion



