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One of the key issues for providing users user-customized or context-aware services is to automatically detect latent topics, users’
interests, and their changing patterns from large-scale social network information. Most of the current methods are devoted either
to discovering static latent topics and users’ interests or to analyzing topic evolution only from intrafeatures of documents, namely,
text content, without considering directly extrafeatures of documents such as authors. Moreover, they are applicable only to the
case of single processor. To resolve these problems, we propose a dynamic users’ interest discovery model with distributed inference
algorithm, named as Distributed Author-Topic over Time (D-AToT) model. The collapsed Gibbs sampling method following the
main idea of MapReduce is also utilized for inferring model parameters. The proposed model can discover latent topics and users’
interests, and mine their changing patterns over time. Extensive experimental results on NIPS (Neural Information Processing

Systems) dataset show that our D-AToT model is feasible and efficient.

1. Introduction

With a dynamic users’ interest discovery model, one can
answer a range of important questions about the content of
information uploaded or shared to social network service
(SNS), such as which topics each user prefers, which users are
similar to each other in terms of their interests, which users
are likely to have written documents similar to an observed
document, and who are influential users at different stages
of topic evolution, and it also helps characterize users as
pioneers, mainstream, or laggards in different subject areas.
Users’ interests have shown their increasing importance
for the development of personalized web services and user-
centric applications [1, 2]. Hence, users’ interest modeling
has been attracting extensive attentions during the past
few years, such as (a) Author-Topic (AT) model [3-5], (b)

Author-Recipient-Topic (ART) model [6-8], Role-Author-
Recipient-Topic (RART) model [6-8], and Author-Persona-
Topic (APT) model [9], (c) Author-Interest-Topic (AIT)
model [10] and Latent-Interest-Topic (LIT) model [11], and
(d) Author-Conference-Topic (ACT) model [12].

In fact, when people enjoy SNS with their smart devices
including phones and tablets, each user’s interest is usually
not static. However, the above models are devoted to discov-
ering static latent topics and user’s interests. Moreover, they
are applicable only to the case of single processor. Of course,
one can perform some post hoc or pre hoc analysis [4, 13]
to discover changing patterns over time, but this misses the
opportunity for time to improve topic discovery [14], and it
is very difficult to align corresponding topics [15]. Currently,
attention for dynamic models is mainly focused on analyzing
topic evolution only from text content, such as Dynamic
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TABLE 1: Notation used in the generative models.
T, T, . Ty
Author 1| __ 911 912 Ik Symbol Description
Author2 | —> 921 922 = Y2k K Number of topics
: — - 9: s : M Number of documents
Author 4] — Ai f‘z ' \L Af | Number of unique words
T T, .. e A Number of unique authors
Word1 | %11 a1 = Pk N,,  Number of word tokens in document m
Word 2 P12 P22 e PK.2 .
: B : y : A, Number of authors in document m
Word VI 91y v oy a Single author index, a € [1, A]
m m m m k Single topic index, k € [1, K]
Tlll“lll; Tllmlll) m [llllllll; m Single document index, m € [1, M]
F1GURE 1: The illustration for discovering dynamic users’ interests. " Single word token index, n € [1, N,
1% Single word index, v € [1,V]
a, Authors in document m, a,, € [1, A]
Topic Model (DTM) [16], continuous time DTM (cDTM) 9, Multinomial distribution of topics specific to the author a.
[17], and Topic over Time (ToT) [14]. 9 Multinomial distribution of topics specific to the
This paper mainly focuses on the dynamic users’ interest " document m.
disc'overy mod'el, 'especially collapsed Gibbs ' Sampling fol- @ Multinomial distribution of words specific to the topic k.
lowing the main idea of MapReduce [18]. Figure1 gives a v Beta distribution of timestamp specific to the topic k.

detailed illustration for discovering dynamic users’ interests.
Our previous work [19, 20] is limited to inference algorithm
on single-processor.

The organization of the rest of this work is as follows.
In Section 2, we firstly discuss two related generative mod-
els, Author-Topic (AT) model and Topic over Time (ToT)
model, and then introduce in detail our proposed Author-
Topic over Time (AToT) model. Sections 3 and 4 describe
the collapse Gibbs sampling methods used for inferring
the model parameters and distributed inference algorithm
version, respectively. In Section 5, extensive experimental
evaluations are conducted, and Section 6 concludes this
work.

2. Generative Models for Documents

Before presenting our Author-Topic over Time (AToT)
model, we first describe two related generative models: AT
model and ToT model. The notation is summarized in Table 1.

2.1. Author-Topic (AT) Model. Rosen-Zvi et al. [3-5] propose
an Author-Topic (AT) model for extracting information
about authors and topics from large text collections. Rosen-
Zvi et al. model documents as if they were generated by
a two-stage stochastic process. An author is represented
by a probability distribution over topics, and each topic is
represented as a probability distribution over words. The
probability distribution over topics in a multiauthor paper is
a mixture of the distributions associated with the authors.
The graphical model representations for AT model are
shown in Figure 2. The AT model can be viewed as a
generative process, which can be described as follows.

(1) For each topic k € [1,K],
(i) draw a multinomial ¢, from Dirichlet(f);

(2) for each author a € [1, A],

Z,,  Topicassociated with the nth token in the document m
W,,,  nthtoken in document m
mn  Chosen author associated with the word token w,,, ,

Timestamp associated with the nth token in the
document m

Dirichlet priors (hyperparameter) to the multinomial

* distribution 9
B Dirichlet priors (hyperparameter) to the multinomial
distribution ¢

(i) draw a multinomial 9, from Dirichlet(e);
(3) for each word n € [1,N,,,] in document m € [1, M],

(i) draw an author assignment x,,, ,, uniformly from
the group of authors a,,,;

(ii) draw a topic assignment z
Multinomial(9,, );

(iii) draw a word w,,, , from Multinomial(g, ).

o  from

2.2. Topic over Time (ToT) Model. Unlike other dynamic topic
models that rely on Markov assumptions or discretization
of time, each topic in Topic over Time (ToT) model [14] is
associated with a continuous distribution over timestamps,
and, for each generated document, the mixture distribution
over topics is influenced by both word cooccurrences and
the document’s timestamp. Thus, the meaning of a particular
topic can be relied upon as constant, but the topics’ occur-
rence and correlations change significantly over time.

The graphical model representations for ToT model
are shown in Figure 3. The ToT is a generative model of
timestamps and the words in the timestamped documents.
The generative process can be described as follows.
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FIGURE 2: The graphical model representation of the AT model.
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FIGURE 3: The graphical model representation of the ToT model.

(1) For each topic k € [1,K],
(i) draw a multinomial from Dirichlet(f);
(2) for each document m € [1, M],

(i) draw a multinomial 9,,, from Dirichlet(«);
(ii) for each word n € [1, N,,] in document m,

(a) draw a topic assignment z,, from
Multinomial(9,,);
(b) draw a word w,, , from Multinomial(g, );

(c) draw a timestamp ¢, ,, from Beta(y, ).

2.3. Author-Topic over Time (AToT) Model. The graphical
model representations for AToT model are shown in Figure 4.
The AToT model can be viewed as a generative process, which
can be described as follows.

24 /S-u\ Zm,n
()
ac€[1,A]
O-FCHRE O ()
k e [1,K] ne[l,N,] k € [1,K]
m e [1, M]

FIGURE 4: The graphical model representation of the AToT model.

(1) For each topic k € [1,K],
(i) draw a multinomial ¢, from Dirichlet(f3);
(2) for each author a € [1, A],
(i) draw a multinomial 9, from Dirichlet(«);
(3) for each word n € [1,N,,] in document m € [1, M],

(i) draw an author assignment x,,, ,
the group of authors a,,,;

uniformly from

(ii) draw a  topic from
Multinomial(sxm i );

(iii) draw a word w,,, ,,

assignment  z,,,

from Multinomial((sz . );

(vi) draw a timestamp t,,, , from Beta(y, ).

From the above generative process, one can see that AToT
model is parameterized as follows:

9, | « ~ Dirichlet(«)
¢, | B ~ Dirichlet(f)
Znp | Oy, ~ Multinomial(9, )
W | @2,
Xpn | A,y ~ Multinomial(1/A,,)
b | ¥,

~ Multinomial((pzm n)

~ Beta(l;/zmm).

As a matter of fact, a paper is usually written by the first
author and reprint author. If one wants to differentiate the
contributions of the first author and reprint author from those
of other coauthors, it is very easy for AToT model to set
different weights for different authors. But since there are no
criteria to guide the corresponding weights, we just set the
equal weights for all coauthors in this work; that is to say,
Xpn | A, follows the uniform distribution.



3. Inference Algorithm

For inference, the task is to estimate the sets of the following
unknown parameters in the AToT model: (1) ® = {‘Pk}kK:p
0 = {9(1}‘::1, and ¥ = {l//k}kK:1 and (2) the corresponding
topic and author assignments z,,, ., x,,, for each word token
w,,, .- In fact, inference cannot be done exactly in this model.
A variety of algorithms have been used to estimate the param-
eters of topics models, such as variational EM (expectation
maximization) [21, 22], expectation propagation [23, 24],
belief propagation [25], and Gibbs sampling [19, 20, 26, 27].
In this work, collapsed Gibbs sampling algorithm [26] is used,
since it provides a simple method for obtaining parameter
estimates under Dirichlet priors and allows combination
of estimates from several local maxima of the posterior
distribution.

In the Gibbs sampling procedure, we need to calcu-
late the conditional distribution P(z,,,,,x,,,, | W>Z_ g,
X ba @, B, ), wherez_,, . X_,,, ) Tepresents the topic
and author assignments for all tokens except w,,,,, respec-
tively. We begin with the joint distribution P(w,z,x,t |
a,«, B, ¥) of a dataset, and, using the chain rule, we can get
the conditional probability conveniently as

Jtaa B, YY)

P (Zm,n’ X | w, Zﬁ(m,n)’ Xj(m 1)

Zmn
nzmn +ﬁw ” )+oc n—l

o«
Zrl(n,(:)+/3v)—l Zk 1(”96 +ock)—1
x Beta (szmm),

@

)

where n;” is the number of times tokens of word v are

assigned to topic k and n;k) represents the number of times
author a is assigned to topic k. Detailed derivation of Gibbs
sampling for AToT is provided in the appendix.

If one further manipulates the above (1), one can turn it
into separated update equations for the topic and author of
each token, suitable for random or systematic scan updates:

P(x,,,|x nffr::) + o, 1 2
v N P BT M
P(Zpp | WsZomp %ot B, W)
nii':" + By, —1 (Z'”")+ocmn—1
" DM (”k + ﬁv) -1 Zkzl (”gckm) + “k) 1 ©
x Beta (Wzm,n) .

During parameter estimation, the algorithm keeps track

of two large data structures: an A x K count matrix n )anda
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K XV count matrix n](cv). From these data structures, one can
easily estimate the @ and @ as follows:

()
n + B,
Py = = (4)
P ( ”+/3V)
(k)
I’l + «,
Ok = : 5)

Zk 1 ( + “k)
As for W, similar to [14], for simplicity and speed, we
update it after each Gibbs sample by the method of moments

[28]:
_ [t (1t
1//k,1:tk<—k( 5 k)—1>,
Sk

Vip = (l—fk)(zk(ls—z_zk) - 1),

k

where £, and 512c indicate the sample mean and biased sample
variance of the timestamps belonging to topic k, respectively.
The readers are invited to consult [28] for details. In fact,
similar to [14], since the Beta distribution with the support
[0,1] can behave many more shapes including the bell
curve than Gaussian distribution, it is utilized to model the
timestamps. But Wang and McCallum [14] did not provide
much detail on how to handle documents with 0 and 1
timestamps so that they have some probability, so the time
range of the data is normalized to [0.01,0.99] in the paper.
With (2)-(6), Gibbs sampling algorithm for AToT model
is summarized in Algorithm 1. The procedure itself uses only
seven larger data structures, the count variables n ) and n(v)
which have dimension AxK and KxV, respectlvely, their row
sums #, and n; with dimensions A and K, Beta parameters W
with dimension K x 2, and the state variable z,, ,,, x,, , with

. . M
dimension W =)' | N,,

4. Distributed Inference Algorithm

Our distributed inference algorithm, named as D-AToT, is
inspired by AD-LDA algorithm [29, 30], following the main
idea of the well-known distributed programming model,
MapReduce [18]. The overall distributed architecture for
AToT model is shown in Figure 5.

As stated in Figure 5, the master firstly distributes M
training documents over P mappers, with nearly equal
number M/P of documents on each mapper. Specifically, D-
AToT partitions document {w}, {a}, and {t} into {{w|P}}§:1,
{{a P}}i 1> and {{t, p}}i , and corresponding topic and author

assignments {z} and {x} into {{z|p}}P , and {{x|p}}p » where
{W|P} {a|p} {t|p} {z|p} and {x|p} exist only on mapper p-
The Author-Topic count {n( )} and topic-word count {n }are

(k) )
likewise distributed, denoted as {na| P} and {nk| p} on mapper

p»> which are used to temporarily store local Author-Topic and
topic-word counts.
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Algorithm AToTGibbs({w}, {a}, {t}, &, B, v, K)
Input: word vectors {w}, author vector {a}, time vector {t}, hyperparameters
«, 3, Beta parameters v, topic number K
Global data: count statistics {n(uk)}, {n,(:)} and their sums {n_}, {n, }
Output: topic associations {z}, author associations {x}, multinomial parameters
® and 0, Beta parameter estimates y, hyperparameter estimates «, 8
// initialization
zero all count variables, 1(1 ) n, n,(:), 1y
for all documents m € [1, M] do
for all words n € [1,N,,] in document m do
sample topic index z,, ,, ~ Multinomial(1/K)
. . . . L a e am
sample author index x,,,, ~ Multinomial(p) with p, = 1 A,
0 otherwise

// increment counts and sums

Z;”n")+—1 1, +—1ni“;":l”)+—1 n, +=1

/! Gibbs sampling over burn-in period and samphng period
while not finished do
for all documents m € [1, M] do
for all words n € [1,N,,,] in documents m do

// decrement counts and sums

nii;""") =Lin, —_1n§1:";"’ =Ln, -=1

sample author index @ according to (2)
sample topic index Z according to (3)

// increment counts and sums

<k)+—1 nz+=1; réw"‘”)+:1;n§+:1

update v according to (6)
if converged and L sampling iterations since last read out then
// different parameters read outs are averaged
read out parameter set ® according to (4)
read out parameter set 8 according to (5)

ALGORITHM I: Gibbs sampling algorithm for AToT model.

Master

{w}. {a}, {t}

T

Mapper 1 Mapper p Mapper P

{w\l}a {a|l}’ {t|1} W‘P}’ {a|P}’ {t|p {W\PL {a|p}) {t|p

T T D L I Y (0 0 8

| Update ¥ |

v)

k)}

N

Reducer

| Calculate ® and ® |

FIGURE 5: The overall distributed architecture for AToT model.




TABLE 2: Distribution of number of papers over year in NIPS dataset.

Year Number of papers
1987 90 (5.2%)
1988 95 (5.5%)
1989 101 (5.8%)
1990 143 (8.2%)
1991 144 (8.3%)
1992 127 (7.3%)
1993 144 (8.3%)
1994 140 (8.0%)
1995 152 (8.7%)
1996 152 (8.7%)
1997 151 (8.7%)
1998 151 (8.7%)
1999 150 (8.6%)

In each Gibbs sampling iteration, each mapper p updates
{z/,} and {x,} by sampling z,,,, and x,,,, from the
following posterior distributions:

p (xm,nlp | X mmlp> Zip> Ao "‘)

(Zpn)

M T 0z = 1
S (W va) -1
P(zm,nlp | Wip> Zommy|p> Xip> b & B ‘I’) )
niﬁj’”) + ﬁwm -1 n,(f’”’") ta, -1

SO+ B) -1 T (P v -1
X Beta (me,n)

and updates local ngl‘; and n,((vl; according to the new topic and

author assignments. After each iteration, each mapper sends
the local counts to the reducer and then the reducer updates

¥ and broadcasts the global n;k), n](cv), and ¥ to all mappers.
After all sampling iterations, the reducer calculates the ® and

© according to (4)-(5).

5. Experimental Results and Discussions

NIPS proceeding dataset is utilized to evaluate the perfor-
mance of our model, which consists of the full text of the 13
years of proceedings from 1987 to 1999 Neural Information
Processing Systems (NIPS) Conferences. The dataset contains
1,740 research papers and 2,037 unique authors. The distribu-
tion of the number of papers over year is shown in Table 2.
In addition to downcasing and removing stop words and
numbers, we also remove the words appearing less than five
times in the corpus. After the preprocessing, the dataset
contains 13,649 unique words and 2,301,375 word tokens in
total. Each document’s timestamp is determined by the year
of the proceedings. In our experiments, K is fixed at 100 and
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the symmetric Dirichlet priors o and f3 are set at 0.5 and 0.1,
respectively. Gibbs sampling is run for 2000 iterations.

5.1. Examples of Topic, Author Distributions, and Topic Evo-
lution. Table 3 illustrates examples of 8 topics learned by
AToT model. The topics are extracted from a single sample
at the 2000th iteration of the Gibbs sampler. Each topic
is illustrated with (1) the top 10 words most likely to be
generated conditioned on the topic, (b) the top 10 authors
which have the highest probability conditioned on the topic,
and (c) histograms and fitted beta PDFs which show topics
evolution patterns over time.

5.2. Author Interest Evolution Analysis. In order to analyze
further author interest evolution, it is interesting to calculate

P(z,t|la)=P(z|a)p(z|t)=9,, xBeta(y,). (8)

In this subsection, we take Sejnowski_T as an example, who
published 43 papers in total from 1987 to 1999 in the NIPS
conferences, as shown in Figure 6(a). The research interest
evolution for Sejnowski_T is reported in Figure 6(b), in which
the area occupied by a square is proportional to the strength
of his research interest.

From Figure 6(b), one can see that Sejnowski_T’s research
interest focused mainly on Topic 51 (Eye Recognition and
Factor Analysis), Topic 37 (Neural Networks), and Topic 58
(Data Model and Learning Algorithm) but with different
emphasis from 1987 to 1999. In the early phase (1989-1993),
Sejnowski_T’s research interest is only limited to Topic 51
and then extended to Topic 37 in 1994 and Topic 58 in
1996 with great research interest strength and finally back to
Topic 51 after 1997. Anyway, Sejnowski_T did not change his
main research direction, Topic 51, which is verified from his
homepage again.

5.3. Predictive Power Analysis. Similar to [5], we further
divide the NIPS papers into a training set 2" of 1,557
papers and a test set 2'°** of 183 papers of which 102 are single-
authored papers. Each author in 2" must have authored
at least one of the training papers. The perplexity, originally
used in language modeling [31], is a standard measure for
estimating the performance of a probabilistic model. The
perplexity of a test document 771 € 2" is defined as the
exponential of the negative normalized predictive likelihood
under the model:

perplexity (W, tz. | ag &, B,'¥)

InP (.t | 2 B.F) (9)
Nﬁ

=exp |-
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TABLE 3: An illustration of 8 topics from a 100-topic solution for the NIPS collection. The titles are our own interpretation of the topics. Each
topic is shown with the 10 words and authors that have the highest probability conditioned on that topic. Histograms show how the topics are
distributed over time; the fitted beta PDFs is shown also.

Topic 87 Topic 37 Topic 11 Topic 88

SVM and Kernel methods Neural networks Reinforcement learning EM and mixture models
Word Prop. Word Prop. Word Prop. Word Prop.
set 0.0188195 learning 0.01106740 state 0.0468466 density 0.0279477
support 0.0187117 network 0.00948016 learning 0.0252876 log 0.0217790
vector 0.0186039 neural 0.00780503 belief 0.0213999 distribution 0.0186946
kernel 0.0160163 input 0.00682192 policy 0.0182191 mixture 0.0178379
function 0.0146146 model 0.00681643 function 0.0175122 method 0.0144108
svm 0.0138060 training 0.00604202 action 0.0150383 gaussion 0.0142394
training 0.0129974 data 0.00597611 states 0.0148615 likelihood 0.0140681
problem 0.0124583 figure 0.00594316 reinforcement 0.0118574 entropy 0.0132113
space 0.0119731 networks 0.00560813 actions 0.0118574 gaussians 0.0123546
solution 0.0115957 function 0.00554222 mdp 0.0102670 form 0.0113264
Author Prop. Author Prop. Author Prop. Author Prop.
Scholkopf_B 0.949692 Reggia_J 0.979832 Zhang N 0.629412 Barron_A 0.608507
Crisp-D 0.888975 Todorov_E 0.976750  Rodriguez_A 0.578235 Wainwright_M 0.372871
Laskov_P 0.706170 Horne_B 0.974146  Dietterich_T 0.342954 Mukherjee_S 0.340927
Steinhage_V 0.634973 Thmn_S 0.973083 Sallans_B 0.228042 LiJ 0.337108
Chapelle_ O 0.610385 Weigend_A 0.972806 Walker_ M 0.189143 Jebara_T 0.253203
Liiy 0.513418 McCallum_R 0.969777 Koller_D 0.1885150 Millman_K 0.171569
Herbrich_R 0.454384 Camana_R 0.969388 Yeung_-D 0.1213730 Fisher_J 0.148230
Gordon-M 0.425090 Slaney_M 0.969382 Thrun_S 0.0842081 Thler_ A 0.128369
Vapnik_V 0.330421 Miikkulainen R 0.968541 Konda_V 0.0680365 Beal M 0.126578
Dom_B 0.286036 Bergen_] 0.968358 Parr_R 0.0468006 Hansen_L 0.0849109
o o T o ~ -
1200 A I . :

s000 Sk 0 3000 > 200 3

& Cop C 3

2008 =0 (1) °3 0 % 0 % =Ll

SERITARIRERR] SEBIFARIRKIKR SEBIFARIRKERA SERIXFTARIRLKRRD
SHRTRRRERRIRS FHRRRTRERERES SHRRRTRERERES SRR
Topic 47 Topic 78 Topic 51 Topic 58
Speech recognition Bayesian learning Eye recognition and factor analysis Data model and learning algorithm

Word Prop. Word Prop. Word Prop. Word Prop.
hmm 0.0415364 bayesian 0.0243032 sejnowski 0.0265409 learning 0.00904655
speech 0.0392921 sampling 0.0184560 eye 0.0265409 model 0.00752741
hmms 0.0216579 prior 0.0178563 ica 0.0183324 neural 0.00705102
mixture 0.0179708 distribution 0.0148578 vor 0.0159531 data 0.00700339
suffix 0.0104362 monte 0.0127588 disparity 0.0153583 function 0.00683930
probabilistic ~ 0.00995527 carlo 0.0118592 head 0.0135738 network 0.00624646
probabilities  0.00947434 model 0.0109597 position 0.0125031 input 0.00593946
singer 0.00883310 posterior 0.0105099 eeg 0.0119083 set 0.00561128
acoustic 0.00883310 priors 0.00946041 parietal 0.0109566 networks 0.00556365

saul 0.00867279 sample 0.00901063 salk 0.0105997 figure 0.00545249
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(a
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TaBLE 3: Continued.
Author Prop. Author Prop. Author Prop. Author Prop.
Rigoll_.G 0.460882 Schuurmans_D 0.651505 Sejnowski_T 0.410459 Gray-M 0.974482
Singer.Y 0.437547 Sykacek_P 0.495506 Pouget_A 0.269781 Dimitrov_A 0.973538
Nix_D 0.192342 Andrieu_C 0.413324 Anastasio_T 0.112957 Galperin_G 0.97094
Saul L 0.170699 Rasmussen_C 0.344185 Horiuchi_ T 0.0328485 Malik_J 0.968536
Hermansky H  0.0795602 Zlochin-M 0.244745 Albright T 0.0099278 Davies_S 0.966534
Roweis_S 0.0391364 Beal M 0.157807 Jousmaki_V 0.00791139 Cook_G 0.96519
Attias_H 0.0357538 Hansen_L 0.122773 Fredholm_H 0.00681818 Ghosn_J 0.964184
Movellan_J 0.033414 Herbrich_R 0.0882701 Bohr_] 0.00643777 Orponen_P 0.964184
Schuster_M 0.0293324 Downs_O 0.0694726 Ramanujam_N 0.00621891 Yen_S 0.963001
Muller K 0.028258 Williams_C 0.0652069 Dixon_L 0.00585938 Chatterjee_C 0.962627
5
1800 —9 6000 6 1500 2 lxg 9 18
1400 _ 5 5000 ml > 16 16 1
1200 6 4000 4 1000 14 1.4 12
1000 5 3000 3 I 12 10
800 4 8
0.8 0.8
igg ; 2000 2 500 06 06 6
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(b) Research interest evolution

FIGURE 6: The distribution of number of publications and research interest evolution for Sejnowski_T.
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X7z,

We approximate the integrals over @ and ® using the
point estimates obtained in (4)-(5) for each sample s €
{1,2,...,10} of assignments x, z and then average over
samples. Figure 7 shows the results for the AToT model and

AT model in a post hoc fashion on 102 single-authored
papers. It is not difficult to see that the perplexity of AToT
model is smaller than that of AT model when the number of
topics > 10, which indicates that AToT model outperforms AT
model.

6. Conclusions

With a dynamic users’ interest discovery model, one can
answer many important questions about the content of
information uploaded or shared to SNS. Based on our
previous work, Author-Topic over Time (AToT) model [19],
for documents using authors and topics with timestamps, this
paper proposes a dynamic users interest discovery model
with distributed inference algorithm following the main idea
of MapReduce, named as Distributed AToT (D-AToT) model.
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FIGURE 7: Perplexity of the 102 single-authored test documents.
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The D-AToT model combines the merits of AT and ToT _ 1 F(Zv:l ﬁ") r(zk:1 ‘xk)
models. Specifically, it can automatically detect latent topics, Hf: . ANm HYZIF (B,) Hf;lr (o)

users’ interests, and their changing patterns from large-scale

social network information. The results on NIPS dataset show

M KL () +B,)
the increase of salient topics and more reasonable users x HHP (tm,n | ‘l/zmm) x H )
interest changing patterns. m=1n=1 T (2 (1 + B,))

One can generalize the approach in the work to construct A 5T (n(k) a )
alternative dynamic models from other static users’ interest k=1" \"a k
discovery models and ToT model with distributed inference (Zk 1 ( ne + k))
algorithm. As a matter of fact, our work currently is limited
to deal with the users and latent topics with timestamps in
SNS. Though NIPS proceeding dataset is a benchmark data
for academic social network, the D-AToT model ignores the
links in SNS. In ongoing work, novel topic model, considering Using the chain rule, we can obtain the conditional
the links in SNS, will be constructed to identify the users with ~ probability conveniently as follows:
similar interests from social networks.

(A1)

N p (Zm,n’ xm,n | w, z—u(m,n)’ Xﬂ(m,n)’ taa ﬁ’ ‘P)
Appendix
= (P (zm,n’ X Wi

’ tm,n | w

1 —(m,n)>

Gibbs Sampling Derivation for AToT
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We begin with the joint distribution P(w, z,x,t | a,«, ,¥).
We can take advantage of conjugate priors to simplify the X (P (wm .y —_— Wommys Egmn)>

integrals. Consider .
~(mn)> Z(myn)> @ &> B ‘I’))

P(w,t,z,x|a,a B, %)

P(wﬁ(mn)’ mn)’zﬁ(mn)’x (m,n) Ia’“’ﬁ \P)

X
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