
A Novel Approach for Measuring Chinese Terms
Semantic Similarity based on Pairwise Sequence

Alignment
Shuo Xu#, Li-jun Zhu#, Xiao-dong Qiao#1, Cun-xiang Xue#*

#Information Technology Supporting Centre, Institute of Scientific and Technical Information of China
No. 15 Fuxing Rd., Haidian District, Beijing 100038, P.R. China

*Department of Information Management, Nanjing University of Science and Technology
 No. 200 Xiaolingwei Street, Xuanwu District, Nanjing 210094, P.R. China

{xush, zhulj, qiaox, xuecx}@istic.ac.cn, 1Corresponding author

Abstract—In this study, we first give a problem formulation for
Chinese terms semantic similarity calculation. After that, on
closer examination, we find that the traditional approach makes
an implicit assumption that the order of corresponding primitive
terms for two terms is roughly consistent. In other words, it
doesn’t consider how the difference in the order affects the
quality of correspondence. To overcome this problem, a novel
approach based on pairwise sequence alignment is proposed.
Finally, an experimental evaluation is conducted, and the result
indicates that our approach outperforms or matches at least the
traditional one in the majority of cases.

I. INTRODUCTION
Terms semantic similarity is broadly used in many

applications, such as intelligent information retrieval, text
clustering/classification, word sense disambiguation, example-
based machine translation, etc. At the present time, there are
many quantitative methods used to compute terms semantic
similarity, which tend to fall into two kinds: one is based on a
semantic taxonomy [1]-[8]; the other is based on collocations of
words in a corpus [9]-[12], where the former is main focus in this
study. A semantic taxonomy is often called a semantic
knowledge database (SKD), and a few popular semantic
knowledge databases include Tongyici Cilin [13] [14], HowNet
[15], WordNet [16], among others.

However, any SKD is not complete and the granularity is
usually very fine, that is to say, it is impossible for a SKD to
collect all words in real-world applications, especially
compound words in science and technology. As a result,
semantic similarity between many terms cannot be calculated
directly. Before illustrating how to solve this problem, some
definitions first are given here. The word in a given SKD is
called as a primitive term (PT) [7][8]. The word that is not
included in the SKD and composed of two or more primitive
terms is called as a combined term (CT) [7][8]. Primitive term
and combined term are collectively known as term.

Formally speaking, given a SKD D = {PT1, PT2, …, PTK},
each element in D is a primitive term, and the word CT
defined below is a combined term:
CT =

1 2 ni i iPT PT PT , CT D,
jiPT D, j = 1, …, n, n 2. (1)

For a combined term CT, the position of its primitive term
is definite, so each CT can be represented as an ordered list,
i.e.,

1 2
, , ,

ni i iCT PT PT PT . (2)
For the sake of consistence, a primitive term PT is also

represented similarly as <PT>. Additionally, in order to make
refer the position information of each primitive term easily,
we define a rank function R for a term T = <

1i
PT ,

2i
PT , …,

ni
PT > (n 1) and a primitive term PT D as follows.

, if
,

0, otherwise
jij PT PT

R T PT . (3)

Now return to semantic similarity calculation problem,
which can be stated formally as follows: Given a SKD D =
{PT1, PT2, …, PTK}, for any two terms T1 = <PT1,1, PT1,2, …,
PT1,m>, T2=<PT2,1, PT2,2, …, PT2,n>, to calculate the semantic
similarity between T1 and T2, denoted as Sim (T1, T2). If both
T1 and T2 are primitive terms, Sim (T1, T2) can be calculated
directly according to the work (See section 3) (Type-I
problem). Otherwise, the usual procedure is to first establish
the correspondence between primitive terms from T1 and T2,
and then to make a weighted summation according to a certain
criterion (See section 4) (Type-II problem).

On closer examination, we find that this traditional method
for Type-II problem makes an implicit assumption that the
order of corresponding primitive terms for two terms is
roughly consistent. However, there are a lot of term pairs in
real world applications that do not meet this assumption, e.g.,
< , > “gas vehicle” and < , > “gas for
vehicle”. Furthermore, the definition of combined terms is not
concerned with whether a term is valid or not, so that this may
result in very high similarity between valid and invalid terms.
By a valid term here, we mean that the term has definite
meaning. Otherwise, it is invalid. For instance, < , >
“automotive lamp” is valid, but < , > “lamp’s
automobile” is invalid. Therefore, we conjecture that this may
have an effect on some applications.

To solve this problem, this paper proposes a novel
approach based on pairwise sequence alignment. Since this

2009 Fifth International Conference on Semantics, Knowledge and Grid

978-0-7695-3810-5/09 $26.00 © 2009 IEEE
DOI 10.1109/SKG.2009.34

92

2009 Fifth International Conference on Semantics, Knowledge and Grid

978-0-7695-3810-5/09 $26.00 © 2009 IEEE
DOI 10.1109/SKG.2009.34

92

paper puts focus on semantic similarity calculation for Type-II
problem, we adopt Tongyici Cilin as our SKD for simplicity.
What needs to explain, this approach is also applicable to the
other SKDs. The organization of the rest of this paper is as
follows. Tongyici Cilin is briefly described in Section 2;
Semantic similarity calculation for Type-I problem is
presented in Section 3. The traditional and novel approaches
of semantic similarity calculation for Type-II problem are
presented in Section 4. In Section 5 an experimental
evaluation is conducted, and Section 6 concludes this paper.

II. DESCRIPTION OF TONGYICI CILIN
Tongyici Cilin (Cilin1 in short) [13] is a Chinese thesaurus

published in 1983, which defines a three-level semantic
taxonomy tree (a dummy root node needs to be added) for
53,859 words. These words consist of 12 major classes
labelled by English upper case letters, 94 medium classes
labelled by English lower case letters, and 1428 minor classes
labelled by 2-digit numbers. All the words in the same leaf
node, i.e., third level node, are regarded as synonyms.

Since some words in Cilin1 become uncommon ones, and
many new words are not yet joined in, Tongyici Cilin
(extension edition, Cilin2 in short) [14] is created from Cilin1
through expansion and refinement. In Cilin2, 39,099 high
frequency words in Cilin1 are reserved and another 38,244
ones are introduced from other resources, such as People’s
Daily corpus. Cilin2 defines a five-level semantic taxonomy
tree (similarly, to add a dummy root node), where the upper
three levels are the same as those in Cilin1. The forth level in
Cilin2, called synset, corresponds to every paragraph of the
third level in Cilin1 and is labelled by English upper case
letters. The fifth level in Cilin2, called subsynset, corresponds
to every line of the third level in Cilin1 and is labelled by the
line number.

TABLE I

CHINESE WORD CODE TABLE IN CILIN2

Position 1 2 3 4 5 6 7 8
Example
of the
label

B o 2 1 A 2 6
#\
=\
@

Meaning
of the
label

Major
class

Medium
class

Minor
class Synset Sub-

synset

Level First Second Third Forth Fifth

In addition, the lines of the third level in Cilin1 can be
divided further into 3 cases: some lines are synonyms, some
are related words, and others only contain one word. In some
applications, these need to be treated differently, so three
symbols (=, #, @) are utilized. Thus, each word in Cilin2 can
be represented by a code of length 8 (See Table I for details).
Of course, this correspondence is not one-to-one. That is, each
code may correspond to multiple words, e.g., the code
“Aa01A01=” corresponds to all elements in { , , ,

, , }. Likewise, each word may also correspond to
multiple codes, e.g., the word “ ” corresponds to all codes in

{Aa01A01=, Ab02B01=, Dd17A02=, De01B02=,
Dn03A04=}.

For convenience, we further introduce some notation.
Define a function Code (PT) as a set of all codes
corresponding to the primitive term PT. For example, Code
() = {Aa01A01=, Ab02B01=, Dd17A02=, De01B02=,
Dn03A04=}. And let lower case letter c represent an element
in this set, i.e., c Code (PT).

III. SEMANTIC SIMILARITY FOR TYPE-I PROBLEM
From the viewpoint of information theory, the similarity

between two objects is related to their commonality and
differences [17]. Based on this point, semantic similarity
between codes c1 and c2 can be defined as follows [7][8]:

1 2
1 2

1 2 1 2

2 (,)(,)
(,) 2 (,)

Spd c c
Sim c c

Dsd c c Spd c c
. (4)

where Spd (c1, c2) and Dsd (c1, c2) is superposed degree and
dissimilitude degree between c1 and c2, respectively. For a
semantic taxonomy tree, such as Cilin2, Spd (c1, c2) is the
length of path shared by c1 and c2, and Dsd (c1, c2) is the
length of the shortest path between two leaf nodes represented
by c1 and c2. For a SKD based on Cilin2, it is easy to check
that Eq. (4) can be simplified as [8]

1 2 1 2(,) (,) 5Sim c c Spd c c . (5)
Now we can define the semantic similarity between

primitive terms PT1 and PT2 as follows [6]-[8]:

1 1 2 2
1 2 1 2() ()

(,) max max ,
c Code PT c Code PT

Sim PT PT Sim c c . (6)

IV. SEMANTIC SIMILARITY FOR TYPE-II PROBLEM
In this section, we will solve the Type-II problem. That is,

given any two terms T1 = <PT1,1, PT1,2, …, PT1,m>, T2=<PT2,1,
PT2,2, …, PT2,n>, to calculate the semantic similarity between
T1 and T2. Without loss of the generality, let m n 2. First
the problem on the existing method is analysed in subsection
A, and then a novel approach based on pairwise sequence
alignment is presented in subsection B.

A. Traditional Approach
The usual procedure [6]-[8] is to first establish a

correspondence between primitive terms from T1 and T2. That
is, a correspondence set CS like below needs to be built:

1 21,1 2, 1,2 2, 1, 2,, , ,
mj j m jCS PT PT PT PT PT PT . (7)

The strategy for building CS is slightly different in the
literature. Here we follow the strategy in [8], and
corresponding pseudo code is given below.

Algorithm 1: Building the correspondence
Input: Two terms T1 = <PT1,1, PT1,2, …, PT1,m>, T2=<PT2,1,
PT2,2, …, PT2,n> and a SKD D.
Output: Correspondence set CS between primitive terms from
T1 and T2.
1. CS = ;
2. FOR i = m TO 1, STEP = 1

// If there is a tie in step 2.1, the one with larger subscript is

9393

preferred.
2.1

2, 2

1, 2,arg max ,
j

i j
PT T

j Sim PT PT ;

2.2 CS CS {PT1, i PT2, j};
2.3 T2 T2 PT2, j;
END FOR

Note that we adopt the symbols representation associated

with a set. For instance, PT2,j T2 means that T2 contains PT2,j.
T2 – PT2, j means that PT2, j is removed from T2. By the way,
the running time of the algorithm is in (m n), and the
amount of memory used is in (m + n).

Now semantic similarity can be calculated as follows:

1 2 1, 2,
1

2 2,1 1,
1, 2,

1
1 1

1 1(,) (,) 0.5

,,
(,) ,

i

i

i

m

i j
i

m
ji

i jm n
i

i j

Sim T T Sim PT PT
m n

R T PTR T PTm
Sim PT PT

n i j

 (8)

where type value of is 0.3 and Sim (PT1, PT2) is the
semantic similarity between primitive terms PT1 and PT2.

(a) (b) (c)

Fig. 1 The correspondence between T1 and T2.

Example 1. Let T1 = < , > “gas vehicle”, T2 = < ,

> “gas for vehicle”. According to Algorithm 1, the
correspondence between T1 and T2 is illustrated in Fig. 1 (a).
Then by Eq. (8), the semantic similarity between T1 and T2 is

1 2
1 1 2 1 2(,) 0.3 2 0.2 1
2 2 2 1 2 1 2

Sim T T

2 1 1 1.0
1 2 1 2

. �

Obviously, it is somewhat unacceptable (Zhang [18] also
observed this phenomenon, and developed a model for
Chinese string similarity based on multi-level features). On
closer examination, we find that this approach makes an
implicit assumption that the order of corresponding primitive
terms for T1 and T2 is roughly consistent. In other words, it
doesn’t consider how the difference in the order affects the
quality of correspondence. However, the order is not trivial
for two Chinese terms, because Chinese terms formation has a
characteristic that the primitive term that expresses centre
meaning usually lies in back part of the terms. For the
Example 1 above, it seems that the correspondence in Fig. 1
(b) or (c) is more proper, in which the symbol “ ” denotes a
gap (see further). Next subsection will consider how to
construct such correspondence.

B. A Novel Approach based on Pairwise Sequence Alignment

In bioinformatics, a sequence alignment is a way of
arranging the sequences of DNA, RNA or protein to identify
regions of similarity that may be a consequence of functional,
structural, or evolutionary relationships between the
sequences. Several versions of this problem occur in practice,
depending on whether one is interest in alignments involving
the entire sequences or just substrings of them. This leads to
the definition of global and local alignments, both of which
can be solved efficiently by dynamic programming [19]. For
more elaborate and detailed surveys we refer the readers to
[20]. It is worth mentioning that the sequence alignment
algorithm has been successfully used to generate candidate
patterns in auto-construction of conceptual relations [21]. In
this paper, we mainly consider global sequence alignments.

Now if we see each primitive term as a nucleotide or amino
acid residue and each term as a sequence, by analogy analysis
it is not difficult to find that the problem to construct the
correspondence similar to Fig. 1 (b) or (c) can be seen as
finding a global alignment between two sequences, which is
main idea of our approach. Taking the characteristic of
Chinese terms formation into consideration, we will build the
alignment from back to front, which is contrary to that in
bioinformatics. What follows is a brief introduction of
Needleman-Wunsch algorithm (NW algorithm in short) [20][22],
which performs a global alignment on two sequences.

Main idea of NW algorithm is to find the alignment with
the highest score. In order to compute the score of each
alignment, we need the scores for aligned primitive terms, i.e.,
semantic similarity between primitive terms. Additionally, a
matrix needs to be allocated, which is often called the F
matrix, and its (i, j)-th entry is often denoted Fi, j (i along
horizontal axis and j along vertical axis). There is one row for
each primitive term in T1 and one column for each primitive
term in T2. As the algorithm progresses, the Fi, j will be
assigned to be the optimal score for the alignment of the last i
primitive terms in T1 and the last j primitive terms in T2.

The principle of optimality is then applied as follows.
Basis: Fi, n+1 d (m i + 1), Fm+1, j d (n j + 1); i =

1, 2, …, m + 1; j = 1, 2, …, n + 1.
Recursion: Fi, j max (Fi+1,j+1 + Sim (PT1, i, PT2, j), Fi, j+1 +

d, Fi+1, j + d) ; i = m, m 1, …, 1; j = n, n 1, …, 1.
Here d is a gap penalty (d = 0.05 in this paper). Once the

F matrix is filled, the top left hand corner of the matrix is the
maximum score for any alignment. To find which alignment
actually gives this score, one can start from the top left cell,
and compare the value with the three possible sources to see
which it comes from as follows. If there is a tie, Case 1 is
preferred, and then Case 2, and last Case 3.

Case 1: IF Fi, j = Fi+1,j+1 + Sim (PT1, i, PT2, j), THEN PT1, i
and PT2, j are aligned;

Case 2: IF Fi, j = Fi, j+1 + d, THEN PT2, j is aligned with a
gap;

Case 3: IF Fi, j = Fi+1, j + d, THEN PT1, i is aligned with a
gap.

In fact, it is not necessary to output/save the optimal
alignment, since the semantic similarity can be calculated
during the procedure.

9494

 i

j 1 2 3 4 5 6 7
 1 4.9 4.95 3.9 1.8 1.8 0.75 -0.3

 2 3.85 3.9 3.95 2.9 1.85 0.8 -0.25

 3 2.8 2.85 2.9 2.95 1.9 0.85 -0.2

 4 1.75 1.8 1.85 1.9 1.95 0.9 -0.15

 5 1 1.05 1.1 1.15 1 0.95 -0.1

 6 0.75 0.8 0.85 0.9 0.95 1 -0.05

 7 -0.3 -0.25 -0.2 -0.15 -0.1 -0.05 0

(a)

i

j 1 2 3 4 5 6
 1 3.75 2.9 1.85 1.1 0.85 -0.2

 2 2.9 2.95 1.9 0.95 0.9 -0.15

 3 1.85 1.9 1.95 1 0.95 -0.1

 4 0.8 0.85 0.9 0.95 1 -0.05

 5 -0.25 -0.2 -0.15 -0.1 -0.05 0

(b)
Fig. 2 The matrix F for computing optimal alignments between T1 and T2 (a), and between T3 and T4 (b).

(a) (b)

(c) (d)

Fig. 3 The optimal alignment between T1 and T2 (a), and between T3 and T4 (b) by NW algorithm, as well as the correspondence between T1 and T2 (c), and
between T3 and T4 (d) by the traditional approach.

Example 2. Let T1 = < , , , , , >
“variable valve timing regulatory system”, T2 = < , ,

, , , > “intelligent variable valve timing system”,
T3 = < , , , > “reflective photoelectric
sensor”, T4 = < , , , , > “projected
photoelectric sensor of speed measuring”.

Fig. 2 shows the matrix F corresponding to T1 and T2 (a), T3
and T4 (b), respectively. The arrow in the right, lower or lower

right of each cell indicates which source it comes from. The
arrow in black reveals the optimal alignments, which is also
illustrated in Fig. 3 (a) and (b) for clearness. What’s more, the
correspondences between T1 and T2 (c), T3 and T4 (d) by
Algorithm 1 are shown in Fig. 3.

By comparison between (a) and (c) as well as (b) and (d) in
Fig. 3, one can easily observe that if the order of
corresponding primitive terms for two terms roughly agrees,
the correspondences obtained by these two methods are the

9595

same. Otherwise, our approach seems to be superior. This
point is validated through experiments in next section. �

In addition, the complexity of NW algorithm is (m n)
both for time and space, viz., the algorithm has quadratic
complexity. As regards the space, however, it is possible to
improve complexity from quadratic to linear and keep the
same generality [22]. The price to pay is an increase in
processing time, which will roughly double. Nevertheless, the
asymptotic time complexity is still the same. But we keep the
space quadratic for faster processing time, because the number
of primitive terms of a term is often not much.

Finally, in order to calculate the semantic similarity
between T1 and T2 from the optimal alignment, we still adopt
the Eq. (8), but the primitive terms that are aligned with gaps
are excluded.
Example 3. Let’s consider the terms in Example 1 again,
repeated here for convenience, T1 = < , > “gas
vehicle”, T2 = < , > “gas for vehicle”. The alignment
in Fig. 1 (c) is used, and then semantic similarity between T1
and T2 is

1 2
1 1 2 1 2(,) 0.3 1 0.2 1 0.5
2 2 2 1 2 1 2

Sim T T

Thus if a threshold greater than 0.5 is set, one cannot
conclude that T1 is similar to T2, opposed to the traditional
approach. �

V. EXPERIMENTAL RESULTS AND DISCUSSIONS
Currently, there is no internationally agreed standard for

assessing the performance of terms (esp., combined terms)
semantic similarity calculation. In our opinion, the reason is
two-fold: (1) semantic similarity is a very subjective concept,
which differs not only from person to person, but also from
application to application; (2) To the best of our knowledge,
there is no public benchmark dataset related to Chinese terms
semantic similarity calculation. Hence, semantic similarities
between some terms from our application are given in Table II,
mainly in order to give some insights for further study.

TABLE II

SEMANTIC SIMILARITIES BETWEEN SOME TERMS FROM OUR APPLICATION. METHOD1 REFERS TO THE TRADITIONAL APPROACH AND METHOD2 OUR APPROACH.

ID Term1 Term2 Method1 Method2
1 < , > “gas vehicle’ < , > “gas for vehicle” 1.0 0.5
2 < , > “front-wheel drive” < , > “driving wheel” 0.9 0.5
3 < , , > “resistive sensor” < , > “ceramic capacitor” 0.65 0.3611

4 < , , , , , > “variable
valve timing regulatory system”

< , , , , , > “intelligent
variable valve timing system” 0.4686 0.8429

5 < , , > “direct current motor
drive” < , > “drive motor” 0.7444 0.3833

6 < , , > “spark-control
computer”

< , , , > “ignition system
controlled by microcomputer” 0.765 0.255

7 < , > “drive motor” < , , > “four-wheel drive” 0.5144 0.3611

8 < , , , > “advance plate” < , , , > “centrifugal advance
mechanism” 0.038 0.518

9 < , , > “multiple disk clutch” < , , > “clutch pressure plate” 0.82 0.4867
10 < , > “automotive lamp” < , > “lamp’s automobile” 1.0 0.5

11 < , , , , > “anti-lock braking
system”

< , , , , > “anti-lock braking
system” 1.0 0.8133

12 < , , > “dynamic braking system” < , , > “braking force system” 0.94 0.7
13 < , , > “brake assist system” < , , > “brake assist system” 1.0 0.7
14 < , > “diesel motor” < , > “gasoline engine” 1.0 1.0

15 < , , , > “reflective
photoelectric sensor”

< , , , , > “projected
photoelectric sensor of speed measuring” 0.785 0.785

16 < , , , , , , > “magnetic
powder safety coupling”

< , , , , , > “pin type safety
coupling” 0.8033 0.8020

17 < > “valve” < , > “relief valve” 0.6167 0.6167

18 < , > “relief valve” < , , , > “oil pressure relief
valve” 0.62 0.62

19 < > “valve” < , , , > “oil pressure relief
valve” 0.445 0.445

20 < , , , > “polycrystal
silicon thin film solar battery”

< , , , , , > “amorphous
silicon thin film solar battery” 0.7476 0.7476

9696

Since most of terms in real-world applications are
combined ones, Chinese terms must be segmented in the first
place. In order to make the best of the knowledge in Cilin2,
we take Cilin2 as our lexicon. For word segmentation method,
forward maximum match (FMM) [23] and backward maximum
match (BMM) [23] with manually correcting are applied at the
same time. In other words, if the results by FMM and BMM
don’t agree with each other, the more reasonable one is
selected from two results. Of course, there still exist some
errors in segmenting, but we let them alone here.

From the results (ID = 1, 2, …, 10) in Table 2, it is not
difficult to see that our approach can avoid very well the
problem mentioned above, where the term < , >
“lamp’s automobile” for ID = 10 is invalid, but the traditional
approach gives semantic similarity 1.0. This point agrees with
our analysis in the introduction. However, there are always the
exceptions due to the complexity of Chinese language
phenomenon, e.g., term pairs for ID = 11, 12, 13. These term
pairs express the same meaning, but our approach does not
give a semantic similarity of 1.0 or close to 1.0. Fortunately,
this case is very small relatively according to our preliminary
statistics. What’s more, because the difference is the order of
primitive terms which don’t express centre meaning, the
semantic similarity obtained by our approach can still be
acceptable.

If the order of corresponding primitive terms for T1 and T2
is roughly consistent, these two methods give almost exact the
results, such as, ID = 15, 16, …, 20 in Table II. Additionally,
what needs to explain, the similarity 1.0 does not always mean
that the involved terms are equivalent, e.g. T1 = < ,

> “diesel motor”, T2 = < , > “gasoline engine” (ID
= 14). The main reason is that we cannot consider the 8th
position (see Table I) in the code of each primitive term when
calculating semantic similarity between primitive terms.

There is another interesting phenomenon in Table II. If the
threshold of 0.6 is set, some hypernym-hyponym relations can
be extracted, such as T1 = < > “valve” and T2 = < , >
“relief valve” (ID = 17), T2 and T3 = < , , , >
“oil pressure relief valve” (ID = 18), however, the others
cannot, such as T1 and T3 (ID = 19). This is mainly caused by
the weights in Eq. (8), which are concerned with the number
of corresponding primitive terms. Nevertheless, the
relationship between T1 and T3 can be inferred simply from T1
& T2 and T2 & T3.

In the end, the incompleteness of Cilin2 is also observed
from Table II, say, T1 = < , , , >
“polycrystal silicon thin film solar battery”, T2 = < , , ,

, , > “amorphous silicon thin film solar
battery”. If Cilin2 includes the primitive term < >
“amorphous silicon”, semantic similarity between T1 and T2
may be higher and more intuitive.

VI. CONCLUSIONS
In this paper, we mainly consider Chinese terms semantic

similarity calculation for Type-II problem, that is, both of
involved terms are not primitive terms. After problem

formulation, we analyse in detail the traditional approach. It
turns out that it does not consider how the difference in the
order of corresponding primitive terms for two terms affects
the quality of correspondence, which results in poor
performance in some cases. By analogy analysis, we think that
the procedure of building correspondence can be seen as a
sequence alignment problem. Therefore, a novel approach
based on sequence alignment is put forward, thus overcoming
the underlying problem on the traditional approach.

ACKNOWLEDGMENT
We thank Information Retrieval (IR) laboratory, Harbin

Institute of Technology (HIT) for providing us with the
Tongyici Cilin (extension edition). This work was funded by
the “Research and Implementation of Knowledge Organizing
System Integration & Service Architecture”, which is
sponsored by Key Technologies R&D Program of Chinese
11th Five-Year Plan (2007-2009) under grant number
2006BAH03B03.

REFERENCES
[1] E. Agirre and G. Rigau, “A Proposal for Word Sense Disambiguation

using Conceptual Distance,” in International Conference Recent
Advances in Natural Language Processing (RANLP), 1995, pp. 258–
264, Tzigov Chark, Bulgaria.

[2] Q. Liu and S. J. Li, “Word Similarity Computing based on How-net,”
in The 3rd Chinese Lexical Semantics Workshop, 2002, Taipei. (in
Chinese)

[3] K. J. Chen and J. M. You, “A Study on Word Similarity using Context
Vector Models,” Computational Linguistics and Chinese Language
Processing, vol. 7, pp. 37–58, 2002.

[4] H. M. Tran and S. Dan, “Word Similarity in WordNet,” in The 13th
International Conference on High Performance Scientific Computing,
2006, pp. 293–302, Hanoi, Vietnam.

[5] X. Y. Liu, Y. M. Zhou, and R. S. Zheng, “Measuring Semantic
Similarity in WordNet,” in the 6th International Conference on
Machine Learning and Cybernetics, 2007, pp. 3431–3435, Hong Kong

[6] C. Z. Zhang, “Research on Synonyms Dictionary-based on
Recognition of Synonyms,” Journal of Huaiyin Institute of Technology,
vol. 13, pp. 59–62, 2004. (in Chinese)

[7] T. Xia, “Study on Chinese Words Semantic Similarity Computation,”
Computer Engineering, vol. 33, pp. 191–194, 2007. (in Chinese)

[8] W. R. Wang, “Dynamic Construction of the Lexical Knowledge
System: Approaches and Tools Implementation,” M. Chinese thesis,
Institute of Scientific and Technical Information of China, Beijing,
China , 2008.

[9] J. Z. Li, C. N. Huang, and E. H. Yang, “An Adaptive Chinese Word
Sense Disambiguation Method,” Journal of Chinese Information
Processing, vol. 13, pp. 1–8, 1999. (in Chinese)

[10] S. Lu and S. Bai, “To Calculate the Distance between Words,” in The
6th National Joint Symposium of Computational Linguistics, 2001,
Taiyuan, China. (in Chinese)

[11] I. Dagan, S. Marcus, and S. Markovitch, “Contextual Word Similarity
and Estimation from Sparse Data,” in Proceedings of the Annual
Meeting the Association for Computational Linguistics (ACL) , 1993,
pp. 164–171.

[12] I. Dagan, L. Lee, and F. C. N. Pereira, “Similarity-based Models of
Word Cooccurrence Probabilities. Machine Learning,” Special Issue on
Machine Learning and Natural Language, vol. 34, pp. 43–69, 1999.

[13] J. J. Mei, Y. M. Zhu, Y. Q. Gao, and H. X. Yin, Tongyici Cilin,
Shanghai Lexicographical Publishing House, Shanghai, China, 1983.
(in Chinese)

[14] Tongyici Cilin (Extension Edition). [Online]. Available: http://www.ir-
lab.org

[15] HowNet. [Online]. Available: http://www.keenage.com/html/
e_index.html

[16] WordNet. [Online]. Available: http://wordnet.princeton.edu

9797

[17] D. Lin, “An Information-Theoretic Definition of Similarity,” in The
15th International Conference on Machine Learning, 1998, pp. 296–
304.

[18] C. Z. Zhang, “A Model for Chinese String Similarity based on Multi-
Level Features,” Journal of the China Society for Scientific and
Technical Information, vol. 24, pp. 696–701, 2005. (in Chinese)

[19] S. R. Eddy, “What is Dynamic Programming?” Nature Biotechnology,
vol. 22, pp. 909–910, 2004.

[20] J. C. Setubal and J. Meidanis, Introduction to Computational
Molecular Biology, PWS Publishing, MA, USA, 1997.

[21] Y. Hu, R. Z. Lu, and H. Liu, “Information Retrieval Oriented Auto-
Construction of Conceptual Relations,” Journal of Chinese Information
Processing, vol. 21, pp. 46–50, 2007. (in Chinese)

[22] S. B. Needleman and C. D. Wunsch, “A General Method Applicable to
the Search for Similarities in the Amino Acid Sequence of Two
Proteins,” Journal of Molecular Biology, vol. 48, pp. 443–453, 1970.

[23] X. H. Chen, “Automatic Analysis of Contemporary Chinese using
Visual C++,” Beijing Language and Culture University Press, Beijing,
China, pp. 90–103, 2000. (in Chinese)

9898

