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Abstract—In this study, we first give a problem formulation for 
Chinese terms semantic similarity calculation. After that, on 
closer examination, we find that the traditional approach makes 
an implicit assumption that the order of corresponding primitive 
terms for two terms is roughly consistent. In other words, it 
doesn’t consider how the difference in the order affects the 
quality of correspondence. To overcome this problem, a novel 
approach based on pairwise sequence alignment is proposed. 
Finally, an experimental evaluation is conducted, and the result 
indicates that our approach outperforms or matches at least the 
traditional one in the majority of cases. 

I. INTRODUCTION 
Terms semantic similarity is broadly used in many 

applications, such as intelligent information retrieval, text 
clustering/classification, word sense disambiguation, example-
based machine translation, etc. At the present time, there are 
many quantitative methods used to compute terms semantic 
similarity, which tend to fall into two kinds: one is based on a 
semantic taxonomy [1]-[8]; the other is based on collocations of 
words in a corpus [9]-[12], where the former is main focus in this 
study. A semantic taxonomy is often called a semantic 
knowledge database (SKD), and a few popular semantic 
knowledge databases include Tongyici Cilin [13] [14], HowNet 
[15], WordNet [16], among others.  

However, any SKD is not complete and the granularity is 
usually very fine, that is to say, it is impossible for a SKD to 
collect all words in real-world applications, especially 
compound words in science and technology. As a result, 
semantic similarity between many terms cannot be calculated 
directly. Before illustrating how to solve this problem, some 
definitions first are given here. The word in a given SKD is 
called as a primitive term (PT) [7][8]. The word that is not 
included in the SKD and composed of two or more primitive 
terms is called as a combined term (CT) [7][8]. Primitive term 
and combined term are collectively known as term.  

Formally speaking, given a SKD D = {PT1, PT2, …, PTK}, 
each element in D is a primitive term, and the word CT 
defined below is a combined term:  
CT =

1 2 ni i iPT PT PT , CT  D, 
jiPT  D, j = 1, …, n, n  2. (1) 

For a combined term CT, the position of its primitive term 
is definite, so each CT can be represented as an ordered list, 
i.e.,  

1 2
, , ,

ni i iCT PT PT PT .                       (2) 
For the sake of consistence, a primitive term PT is also 

represented similarly as <PT>. Additionally, in order to make 
refer the position information of each primitive term easily, 
we define a rank function R for a term T = <

1i
PT , 

2i
PT , …, 

ni
PT > (n  1) and a primitive term PT  D as follows.  

,   if  
,

0,   otherwise     
jij PT PT

R T PT .                     (3) 

Now return to semantic similarity calculation problem, 
which can be stated formally as follows: Given a SKD D = 
{PT1, PT2, …, PTK}, for any two terms T1 = <PT1,1, PT1,2, …, 
PT1,m>, T2=<PT2,1, PT2,2, …, PT2,n>, to calculate the semantic 
similarity between T1 and T2, denoted as Sim (T1, T2). If both 
T1 and T2 are primitive terms, Sim (T1, T2) can be calculated 
directly according to the work (See section 3) (Type-I 
problem). Otherwise, the usual procedure is to first establish 
the correspondence between primitive terms from T1 and T2, 
and then to make a weighted summation according to a certain 
criterion (See section 4) (Type-II problem).  

On closer examination, we find that this traditional method 
for Type-II problem makes an implicit assumption that the 
order of corresponding primitive terms for two terms is 
roughly consistent. However, there are a lot of term pairs in 
real world applications that do not meet this assumption, e.g., 
< , > “gas vehicle” and < , > “gas for 
vehicle”. Furthermore, the definition of combined terms is not 
concerned with whether a term is valid or not, so that this may 
result in very high similarity between valid and invalid terms. 
By a valid term here, we mean that the term has definite 
meaning. Otherwise, it is invalid. For instance, < , > 
“automotive lamp” is valid, but < , > “lamp’s 
automobile” is invalid. Therefore, we conjecture that this may 
have an effect on some applications.  

To solve this problem, this paper proposes a novel 
approach based on pairwise sequence alignment. Since this 
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paper puts focus on semantic similarity calculation for Type-II 
problem, we adopt Tongyici Cilin as our SKD for simplicity. 
What needs to explain, this approach is also applicable to the 
other SKDs. The organization of the rest of this paper is as 
follows. Tongyici Cilin is briefly described in Section 2; 
Semantic similarity calculation for Type-I problem is 
presented in Section 3. The traditional and novel approaches 
of semantic similarity calculation for Type-II problem are 
presented in Section 4. In Section 5 an experimental 
evaluation is conducted, and Section 6 concludes this paper. 

II. DESCRIPTION OF TONGYICI CILIN 
Tongyici Cilin (Cilin1 in short) [13] is a Chinese thesaurus 

published in 1983, which defines a three-level semantic 
taxonomy tree (a dummy root node needs to be added) for 
53,859 words. These words consist of 12 major classes 
labelled by English upper case letters, 94 medium classes 
labelled by English lower case letters, and 1428 minor classes 
labelled by 2-digit numbers. All the words in the same leaf 
node, i.e., third level node, are regarded as synonyms.  

Since some words in Cilin1 become uncommon ones, and 
many new words are not yet joined in, Tongyici Cilin 
(extension edition, Cilin2 in short) [14] is created from Cilin1 
through expansion and refinement. In Cilin2, 39,099 high 
frequency words in Cilin1 are reserved and another 38,244 
ones are introduced from other resources, such as People’s 
Daily corpus. Cilin2 defines a five-level semantic taxonomy 
tree (similarly, to add a dummy root node), where the upper 
three levels are the same as those in Cilin1. The forth level in 
Cilin2, called synset, corresponds to every paragraph of the 
third level in Cilin1 and is labelled by English upper case 
letters. The fifth level in Cilin2, called subsynset, corresponds 
to every line of the third level in Cilin1 and is labelled by the 
line number.  

 
TABLE I 

CHINESE WORD CODE TABLE IN CILIN2 

Position 1 2 3 4 5 6 7 8 
Example 
of the 
label 

B o 2 1 A 2 6
#\
=\
@

Meaning 
of the 
label 

Major 
class 

Medium 
class 

Minor 
class Synset Sub- 

synset  

Level First Second Third Forth Fifth  
 

In addition, the lines of the third level in Cilin1 can be 
divided further into 3 cases: some lines are synonyms, some 
are related words, and others only contain one word. In some 
applications, these need to be treated differently, so three 
symbols (=, #, @) are utilized. Thus, each word in Cilin2 can 
be represented by a code of length 8 (See Table I for details). 
Of course, this correspondence is not one-to-one. That is, each 
code may correspond to multiple words, e.g., the code 
“Aa01A01=” corresponds to all elements in { , , , 

, , }. Likewise, each word may also correspond to 
multiple codes, e.g., the word “ ” corresponds to all codes in 

{Aa01A01=, Ab02B01=, Dd17A02=, De01B02=, 
Dn03A04=}.  

For convenience, we further introduce some notation. 
Define a function Code (PT) as a set of all codes 
corresponding to the primitive term PT. For example, Code 
( ) = {Aa01A01=, Ab02B01=, Dd17A02=, De01B02=, 
Dn03A04=}. And let lower case letter c represent an element 
in this set, i.e., c  Code (PT).  

III. SEMANTIC SIMILARITY FOR TYPE-I PROBLEM 
From the viewpoint of information theory, the similarity 

between two objects is related to their commonality and 
differences [17]. Based on this point, semantic similarity 
between codes c1 and c2 can be defined as follows [7][8]:  

1 2
1 2

1 2 1 2

2 ( , )( , )
( , ) 2 ( , )

Spd c c
Sim c c

Dsd c c Spd c c
.            (4) 

where Spd (c1, c2) and Dsd (c1, c2) is superposed degree and 
dissimilitude degree between c1 and c2, respectively. For a 
semantic taxonomy tree, such as Cilin2, Spd (c1, c2) is the 
length of path shared by c1 and c2, and Dsd (c1, c2) is the 
length of the shortest path between two leaf nodes represented 
by c1 and c2. For a SKD based on Cilin2, it is easy to check 
that Eq. (4) can be simplified as [8] 

1 2 1 2( , ) ( , ) 5Sim c c Spd c c .                        (5) 
Now we can define the semantic similarity between 

primitive terms PT1 and PT2 as follows [6]-[8]:  

1 1 2 2
1 2 1 2( ) ( )

( , ) max max ,
c Code PT c Code PT

Sim PT PT Sim c c .       (6) 

IV. SEMANTIC SIMILARITY FOR TYPE-II PROBLEM 
In this section, we will solve the Type-II problem. That is, 

given any two terms T1 = <PT1,1, PT1,2, …, PT1,m>, T2=<PT2,1, 
PT2,2, …, PT2,n>, to calculate the semantic similarity between 
T1 and T2. Without loss of the generality, let m  n  2. First 
the problem on the existing method is analysed in subsection 
A, and then a novel approach based on pairwise sequence 
alignment is presented in subsection B. 

A. Traditional Approach 
The usual procedure [6]-[8] is to first establish a 

correspondence between primitive terms from T1 and T2. That 
is, a correspondence set CS like below needs to be built:  

1 21,1 2, 1,2 2, 1, 2,, , ,
mj j m jCS PT PT PT PT PT PT .    (7) 

The strategy for building CS is slightly different in the 
literature. Here we follow the strategy in [8], and 
corresponding pseudo code is given below.  

 
Algorithm 1: Building the correspondence 
Input: Two terms T1 = <PT1,1, PT1,2, …, PT1,m>, T2=<PT2,1, 
PT2,2, …, PT2,n> and a SKD D.  
Output: Correspondence set CS between primitive terms from 
T1 and T2.  
1. CS = ;  
2. FOR i = m TO 1, STEP = 1 

// If there is a tie in step 2.1, the one with larger subscript is 
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preferred. 
2.1

2, 2

1, 2,arg max ,
j

i j
PT T

j Sim PT PT ;  

2.2 CS  CS  {PT1, i  PT2, j};  
2.3 T2  T2  PT2, j;  
END FOR 

 
Note that we adopt the symbols representation associated 

with a set. For instance, PT2,j  T2 means that T2 contains PT2,j. 
T2 – PT2, j means that PT2, j is removed from T2. By the way, 
the running time of the algorithm is in  (m  n), and the 
amount of memory used is in  (m + n).  

Now semantic similarity can be calculated as follows:  

1 2 1, 2,
1

2 2,1 1,
1, 2,

1
1 1

1 1( , ) ( , ) 0.5

,,
( , ) ,

i

i

i

m

i j
i

m
ji

i jm n
i

i j

Sim T T Sim PT PT
m n

R T PTR T PTm
Sim PT PT

n i j

 (8) 

where type value of  is 0.3 and Sim (PT1, PT2) is the 
semantic similarity between primitive terms PT1 and PT2.  
 

        
           

         
(a)  (b)  (c) 

Fig. 1  The correspondence between T1 and T2.  

 
Example 1. Let T1 = < , > “gas vehicle”, T2 = < , 

> “gas for vehicle”. According to Algorithm 1, the 
correspondence between T1 and T2 is illustrated in Fig. 1 (a). 
Then by Eq. (8), the semantic similarity between T1 and T2 is  

1 2
1 1 2 1 2( , ) 0.3 2 0.2 1
2 2 2 1 2 1 2

Sim T T  

2 1 1 1.0
1 2 1 2

.                                                       � 

Obviously, it is somewhat unacceptable (Zhang [18] also 
observed this phenomenon, and developed a model for 
Chinese string similarity based on multi-level features). On 
closer examination, we find that this approach makes an 
implicit assumption that the order of corresponding primitive 
terms for T1 and T2 is roughly consistent. In other words, it 
doesn’t consider how the difference in the order affects the 
quality of correspondence. However, the order is not trivial 
for two Chinese terms, because Chinese terms formation has a 
characteristic that the primitive term that expresses centre 
meaning usually lies in back part of the terms. For the 
Example 1 above, it seems that the correspondence in Fig. 1 
(b) or (c) is more proper, in which the symbol “ ” denotes a 
gap (see further). Next subsection will consider how to 
construct such correspondence. 

B. A Novel Approach based on Pairwise Sequence Alignment 

In bioinformatics, a sequence alignment is a way of 
arranging the sequences of DNA, RNA or protein to identify 
regions of similarity that may be a consequence of functional, 
structural, or evolutionary relationships between the 
sequences. Several versions of this problem occur in practice, 
depending on whether one is interest in alignments involving 
the entire sequences or just substrings of them. This leads to 
the definition of global and local alignments, both of which 
can be solved efficiently by dynamic programming [19]. For 
more elaborate and detailed surveys we refer the readers to 
[20]. It is worth mentioning that the sequence alignment 
algorithm has been successfully used to generate candidate 
patterns in auto-construction of conceptual relations [21]. In 
this paper, we mainly consider global sequence alignments.  

Now if we see each primitive term as a nucleotide or amino 
acid residue and each term as a sequence, by analogy analysis 
it is not difficult to find that the problem to construct the 
correspondence similar to Fig. 1 (b) or (c) can be seen as 
finding a global alignment between two sequences, which is 
main idea of our approach. Taking the characteristic of 
Chinese terms formation into consideration, we will build the 
alignment from back to front, which is contrary to that in 
bioinformatics. What follows is a brief introduction of 
Needleman-Wunsch algorithm (NW algorithm in short) [20][22], 
which performs a global alignment on two sequences.  

Main idea of NW algorithm is to find the alignment with 
the highest score. In order to compute the score of each 
alignment, we need the scores for aligned primitive terms, i.e., 
semantic similarity between primitive terms. Additionally, a 
matrix needs to be allocated, which is often called the F 
matrix, and its (i, j)-th entry is often denoted Fi, j (i along 
horizontal axis and j along vertical axis). There is one row for 
each primitive term in T1 and one column for each primitive 
term in T2. As the algorithm progresses, the Fi, j will be 
assigned to be the optimal score for the alignment of the last i 
primitive terms in T1 and the last j primitive terms in T2.  

The principle of optimality is then applied as follows.  
Basis: Fi, n+1  d  (m  i + 1), Fm+1, j  d (n  j + 1); i = 

1, 2, …, m + 1; j = 1, 2, …, n + 1.  
Recursion: Fi, j  max (Fi+1,j+1 + Sim (PT1, i, PT2, j), Fi, j+1 + 

d, Fi+1, j + d) ; i = m, m  1, …, 1; j = n, n  1, …, 1.  
Here d is a gap penalty (d = 0.05 in this paper). Once the 

F matrix is filled, the top left hand corner of the matrix is the 
maximum score for any alignment. To find which alignment 
actually gives this score, one can start from the top left cell, 
and compare the value with the three possible sources to see 
which it comes from as follows. If there is a tie, Case 1 is 
preferred, and then Case 2, and last Case 3.  

Case 1: IF Fi, j = Fi+1,j+1 + Sim (PT1, i, PT2, j), THEN PT1, i 
and PT2, j are aligned;  

Case 2: IF Fi, j = Fi, j+1 + d, THEN PT2, j is aligned with a 
gap;  

Case 3: IF Fi, j = Fi+1, j + d, THEN PT1, i is aligned with a 
gap.  

In fact, it is not necessary to output/save the optimal 
alignment, since the semantic similarity can be calculated 
during the procedure. 
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j   1  2  3  4  5  6  7 
 1 4.9  4.95  3.9  1.8  1.8  0.75  -0.3 
              
 2 3.85  3.9 3.95  2.9  1.85  0.8  -0.25 
              
 3 2.8  2.85 2.9 2.95  1.9  0.85  -0.2 
              
 4 1.75  1.8 1.85 1.9 1.95  0.9  -0.15 
              
 5 1  1.05 1.1 1.15  1  0.95  -0.1 
             
 6 0.75  0.8 0.85 0.9 0.95 1  -0.05 
               
 7 -0.3  -0.25 -0.2 -0.15 -0.1 -0.05  0 

(a) 

 
i  

 
   

 
 

 
 
 

 
 
 
 

  

j   1  2  3  4  5  6 
 1 3.75  2.9  1.85  1.1  0.85  -0.2 
            
 2 2.9  2.95  1.9  0.95  0.9  -0.15 
           
 3 1.85  1.9 1.95  1  0.95  -0.1 
           
 4 0.8  0.85 0.9 0.95 1  -0.05 

             
 5 -0.25  -0.2 -0.15 -0.1 -0.05  0 

(b) 
Fig. 2  The matrix F for computing optimal alignments between T1 and T2 (a), and between T3 and T4 (b).  

 
      
          

       
(a) (b) 

     
           
       

(c) (d) 

Fig. 3  The optimal alignment between T1 and T2 (a), and between T3 and T4 (b) by NW algorithm, as well as the correspondence between T1 and T2 (c), and 
between T3 and T4 (d) by the traditional approach. 

 
Example 2. Let T1 = < , , , , , > 
“variable valve timing regulatory system”, T2 = < , , 

, , , > “intelligent variable valve timing system”, 
T3 = < , , , > “reflective photoelectric 
sensor”, T4 = < , , , , > “projected 
photoelectric sensor of speed measuring”. 

Fig. 2 shows the matrix F corresponding to T1 and T2 (a), T3 
and T4 (b), respectively. The arrow in the right, lower or lower 

right of each cell indicates which source it comes from. The 
arrow in black reveals the optimal alignments, which is also 
illustrated in Fig. 3 (a) and (b) for clearness. What’s more, the 
correspondences between T1 and T2 (c), T3 and T4 (d) by 
Algorithm 1 are shown in Fig. 3.  

By comparison between (a) and (c) as well as (b) and (d) in 
Fig. 3, one can easily observe that if the order of 
corresponding primitive terms for two terms roughly agrees, 
the correspondences obtained by these two methods are the 
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same. Otherwise, our approach seems to be superior. This 
point is validated through experiments in next section.          � 

In addition, the complexity of NW algorithm is  (m  n) 
both for time and space, viz., the algorithm has quadratic 
complexity. As regards the space, however, it is possible to 
improve complexity from quadratic to linear and keep the 
same generality [22]. The price to pay is an increase in 
processing time, which will roughly double. Nevertheless, the 
asymptotic time complexity is still the same. But we keep the 
space quadratic for faster processing time, because the number 
of primitive terms of a term is often not much.  

Finally, in order to calculate the semantic similarity 
between T1 and T2 from the optimal alignment, we still adopt 
the Eq. (8), but the primitive terms that are aligned with gaps 
are excluded.  
Example 3. Let’s consider the terms in Example 1 again, 
repeated here for convenience, T1 = < , > “gas 
vehicle”, T2 = < , > “gas for vehicle”. The alignment 
in Fig. 1 (c) is used, and then semantic similarity between T1 
and T2 is 

1 2
1 1 2 1 2( , ) 0.3 1 0.2 1 0.5
2 2 2 1 2 1 2

Sim T T  

Thus if a threshold greater than 0.5 is set, one cannot 
conclude that T1 is similar to T2, opposed to the traditional 
approach.                                                                                 � 

V. EXPERIMENTAL RESULTS AND DISCUSSIONS 
Currently, there is no internationally agreed standard for 

assessing the performance of terms (esp., combined terms) 
semantic similarity calculation. In our opinion, the reason is 
two-fold: (1) semantic similarity is a very subjective concept, 
which differs not only from person to person, but also from 
application to application; (2) To the best of our knowledge, 
there is no public benchmark dataset related to Chinese terms 
semantic similarity calculation. Hence, semantic similarities 
between some terms from our application are given in Table II, 
mainly in order to give some insights for further study.  

 
TABLE II 

SEMANTIC SIMILARITIES BETWEEN SOME TERMS FROM OUR APPLICATION. METHOD1 REFERS TO THE TRADITIONAL APPROACH AND METHOD2 OUR APPROACH. 

ID Term1 Term2 Method1 Method2
1 < , > “gas vehicle’ < , > “gas for vehicle” 1.0 0.5 
2 < , > “front-wheel drive” < , > “driving wheel” 0.9 0.5 
3 < , , > “resistive sensor” < , > “ceramic capacitor” 0.65 0.3611 

4 < , , , , , > “variable 
valve timing regulatory system” 

< , , , , , > “intelligent 
variable valve timing system” 0.4686 0.8429 

5 < , , > “direct current motor 
drive” < , > “drive motor” 0.7444 0.3833 

6 < , , > “spark-control 
computer” 

< , , , > “ignition system 
controlled by microcomputer” 0.765 0.255 

7 < , > “drive motor” < , , > “four-wheel drive” 0.5144 0.3611 

8 < , , , > “advance plate” < , , , > “centrifugal advance 
mechanism” 0.038 0.518 

9 < , , > “multiple disk clutch” < , , > “clutch pressure plate” 0.82 0.4867 
10 < , > “automotive lamp” < , > “lamp’s automobile” 1.0 0.5 

11 < , , , , > “anti-lock braking 
system” 

< , , , , > “anti-lock braking 
system” 1.0 0.8133 

12 < , , > “dynamic braking system” < , , > “braking force system” 0.94 0.7 
13 < , , > “brake assist system” < , , > “brake assist system” 1.0 0.7 
14 < , > “diesel motor” < , > “gasoline engine” 1.0 1.0 

15 < , , , > “reflective 
photoelectric sensor” 

< , , , , > “projected 
photoelectric sensor of speed measuring” 0.785 0.785 

16 < , , , , , , > “magnetic 
powder safety coupling” 

< , , , , , > “pin type safety 
coupling” 0.8033 0.8020 

17 < > “valve” < , > “relief valve” 0.6167 0.6167 

18 < , > “relief valve” < , , , > “oil pressure relief 
valve” 0.62 0.62 

19 < > “valve” < , , , > “oil pressure relief 
valve” 0.445 0.445 

20 < , , , > “polycrystal 
silicon thin film solar battery” 

< , , , , , > “amorphous 
silicon thin film solar battery” 0.7476 0.7476 
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Since most of terms in real-world applications are 
combined ones, Chinese terms must be segmented in the first 
place. In order to make the best of the knowledge in Cilin2, 
we take Cilin2 as our lexicon. For word segmentation method, 
forward maximum match (FMM) [23] and backward maximum 
match (BMM) [23] with manually correcting are applied at the 
same time. In other words, if the results by FMM and BMM 
don’t agree with each other, the more reasonable one is 
selected from two results. Of course, there still exist some 
errors in segmenting, but we let them alone here.  

From the results (ID = 1, 2, …, 10) in Table 2, it is not 
difficult to see that our approach can avoid very well the 
problem mentioned above, where the term < , > 
“lamp’s automobile” for ID = 10 is invalid, but the traditional 
approach gives semantic similarity 1.0. This point agrees with 
our analysis in the introduction. However, there are always the 
exceptions due to the complexity of Chinese language 
phenomenon, e.g., term pairs for ID = 11, 12, 13. These term 
pairs express the same meaning, but our approach does not 
give a semantic similarity of 1.0 or close to 1.0. Fortunately, 
this case is very small relatively according to our preliminary 
statistics. What’s more, because the difference is the order of 
primitive terms which don’t express centre meaning, the 
semantic similarity obtained by our approach can still be 
acceptable.  

If the order of corresponding primitive terms for T1 and T2 
is roughly consistent, these two methods give almost exact the 
results, such as, ID = 15, 16, …, 20 in Table II. Additionally, 
what needs to explain, the similarity 1.0 does not always mean 
that the involved terms are equivalent, e.g. T1 = < , 

> “diesel motor”, T2 = < , > “gasoline engine” (ID 
= 14). The main reason is that we cannot consider the 8th 
position (see Table I) in the code of each primitive term when 
calculating semantic similarity between primitive terms.  

There is another interesting phenomenon in Table II. If the 
threshold of 0.6 is set, some hypernym-hyponym relations can 
be extracted, such as T1 = < > “valve” and T2 = < , > 
“relief valve” (ID = 17), T2 and T3 = < , , , > 
“oil pressure relief valve” (ID = 18), however, the others 
cannot, such as T1 and T3 (ID = 19). This is mainly caused by 
the weights in Eq. (8), which are concerned with the number 
of corresponding primitive terms. Nevertheless, the 
relationship between T1 and T3 can be inferred simply from T1 
& T2 and T2 & T3.  

In the end, the incompleteness of Cilin2 is also observed 
from Table II, say, T1 = < , , , > 
“polycrystal silicon thin film solar battery”, T2 = < , , , 

, , > “amorphous silicon thin film solar 
battery”. If Cilin2 includes the primitive term < > 
“amorphous silicon”, semantic similarity between T1 and T2 
may be higher and more intuitive. 

VI. CONCLUSIONS 
In this paper, we mainly consider Chinese terms semantic 

similarity calculation for Type-II problem, that is, both of 
involved terms are not primitive terms. After problem 

formulation, we analyse in detail the traditional approach. It 
turns out that it does not consider how the difference in the 
order of corresponding primitive terms for two terms affects 
the quality of correspondence, which results in poor 
performance in some cases. By analogy analysis, we think that 
the procedure of building correspondence can be seen as a 
sequence alignment problem. Therefore, a novel approach 
based on sequence alignment is put forward, thus overcoming 
the underlying problem on the traditional approach.  

ACKNOWLEDGMENT 
We thank Information Retrieval (IR) laboratory, Harbin 

Institute of Technology (HIT) for providing us with the 
Tongyici Cilin (extension edition). This work was funded by 
the “Research and Implementation of Knowledge Organizing 
System Integration & Service Architecture”, which is 
sponsored by Key Technologies R&D Program of Chinese 
11th Five-Year Plan (2007-2009) under grant number 
2006BAH03B03.  

REFERENCES 
[1] E. Agirre and G. Rigau, “A Proposal for Word Sense Disambiguation 

using Conceptual Distance,” in International Conference Recent 
Advances in Natural Language Processing (RANLP), 1995, pp. 258–
264, Tzigov Chark, Bulgaria.  

[2] Q. Liu and S. J. Li, “Word Similarity Computing based on How-net,” 
in The 3rd Chinese Lexical Semantics Workshop, 2002, Taipei. (in 
Chinese) 

[3] K. J. Chen and J. M. You, “A Study on Word Similarity using Context 
Vector Models,” Computational Linguistics and Chinese Language 
Processing, vol. 7, pp. 37–58, 2002.  

[4] H. M. Tran and S. Dan, “Word Similarity in WordNet,” in The 13th 
International Conference on High Performance Scientific Computing, 
2006, pp. 293–302, Hanoi, Vietnam.  

[5] X. Y. Liu, Y. M. Zhou, and R. S. Zheng, “Measuring Semantic 
Similarity in WordNet,” in the 6th International Conference on 
Machine Learning and Cybernetics, 2007, pp. 3431–3435, Hong Kong  

[6] C. Z. Zhang, “Research on Synonyms Dictionary-based on 
Recognition of Synonyms,” Journal of Huaiyin Institute of Technology, 
vol. 13, pp. 59–62, 2004. (in Chinese) 

[7] T. Xia, “Study on Chinese Words Semantic Similarity Computation,” 
Computer Engineering, vol. 33, pp. 191–194, 2007. (in Chinese) 

[8] W. R. Wang, “Dynamic Construction of the Lexical Knowledge 
System: Approaches and Tools Implementation,” M. Chinese thesis, 
Institute of Scientific and Technical Information of China, Beijing, 
China , 2008.  

[9] J. Z. Li, C. N. Huang, and E. H. Yang, “An Adaptive Chinese Word 
Sense Disambiguation Method,” Journal of Chinese Information 
Processing, vol. 13, pp. 1–8, 1999. (in Chinese)  

[10] S. Lu and S. Bai, “To Calculate the Distance between Words,” in The 
6th National Joint Symposium of Computational Linguistics, 2001, 
Taiyuan, China. (in Chinese)  

[11] I. Dagan, S. Marcus, and S. Markovitch, “Contextual Word Similarity 
and Estimation from Sparse Data,” in Proceedings of the Annual 
Meeting the Association for Computational Linguistics (ACL) , 1993, 
pp. 164–171.  

[12] I. Dagan, L. Lee, and F. C. N. Pereira, “Similarity-based Models of 
Word Cooccurrence Probabilities. Machine Learning,” Special Issue on 
Machine Learning and Natural Language, vol. 34, pp. 43–69, 1999.  

[13] J. J. Mei, Y. M. Zhu, Y. Q. Gao, and H. X. Yin, Tongyici Cilin, 
Shanghai Lexicographical Publishing House, Shanghai, China, 1983. 
(in Chinese) 

[14] Tongyici Cilin (Extension Edition). [Online]. Available: http://www.ir-
lab.org   

[15] HowNet. [Online]. Available: http://www.keenage.com/html/ 
e_index.html  

[16] WordNet. [Online]. Available: http://wordnet.princeton.edu  

9797



[17] D. Lin, “An Information-Theoretic Definition of Similarity,” in The 
15th International Conference on Machine Learning, 1998, pp. 296–
304.  

[18] C. Z. Zhang, “A Model for Chinese String Similarity based on Multi-
Level Features,” Journal of the China Society for Scientific and 
Technical Information, vol. 24, pp. 696–701, 2005. (in Chinese)  

[19] S. R. Eddy, “What is Dynamic Programming?” Nature Biotechnology, 
vol. 22, pp. 909–910, 2004.  

[20] J. C. Setubal and J. Meidanis, Introduction to Computational 
Molecular Biology, PWS Publishing, MA, USA, 1997.  

[21] Y. Hu, R. Z. Lu, and H. Liu, “Information Retrieval Oriented Auto-
Construction of Conceptual Relations,” Journal of Chinese Information 
Processing, vol. 21, pp. 46–50, 2007. (in Chinese) 

[22] S. B. Needleman and C. D. Wunsch, “A General Method Applicable to 
the Search for Similarities in the Amino Acid Sequence of Two 
Proteins,” Journal of Molecular Biology, vol. 48, pp. 443–453, 1970.  

[23] X. H. Chen, “Automatic Analysis of Contemporary Chinese using 
Visual C++,” Beijing Language and Culture University Press, Beijing, 
China, pp. 90–103, 2000. (in Chinese)  

 

9898


