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Abstract There are often the underlying cross relatedness amongst multiple tasks,
which is discarded directly by traditional single-task learning methods. Since multi-
task learning can exploit these relatedness to further improve the performance, it
has attracted extensive attention in many domains including multimedia. It has been
shown through a meticulous empirical study that the generalization performance of
Least-Squares Support Vector Machine (LS-SVM) is comparable to that of SVM.
In order to generalize LS-SVM from single-task to multi-task learning, inspired by
the regularized multi-task learning (RMTL), this study proposes a novel multi-task
learning approach, multi-task LS-SVM (MTLS-SVM). Similar to LS-SVM, one only
solves a convex linear system in the training phrase, too. What’s more, we unify
the classification and regression problems in an efficient training algorithm, which
effectively employs the Krylow methods. Finally, experimental results on school and
dermatology validate the effectiveness of the proposed approach.

Keywords Multi-task learning ·Least-Square Support Vector Machine (LS-SVM) ·
Multi-Task LS-SVM (MTLS-SVM) ·Krylow methods

S. Xu · X. Qiao · L. Zhu
Information Technology Supporting Center, Institute of Scientific and Technical Information
of China, No. 15 Fuxing Rd., Haidian District, Beijing 100038, People’s Republic of China

S. Xu
e-mail: xush@istic.ac.cn

X. Qiao
e-mail: qiaox@istic.ac.cn

L. Zhu
e-mail: zhulj@istic.ac.cn

X. An (B)
School of Economics and Management, Beijing Forestry University, No. 35 Qinghua East Rd.,
Haidian District, Beijing 100083, People’s Republic of China
e-mail: anxin927@gmail.com



700 Multimed Tools Appl (2014) 71:699–715

1 Introduction

It is increasing important to learnmultiple related tasks inmodern applications, rang-
ing from the prediction of test scores in social sciences [3, 6] and the classification of
protein functions in systems biology [16] to the categorization of scenes in computer
vision [42] and more recently to web and text-image search and ranking [15, 17], web
information extraction [19] and labeling music tags [27]. A näve solution is to learn a
model for each task separately and then to make predictions using the independent
models, i.e., traditional single-task learning methods. This approach is simple and
easy to implement, but its performance is unsatisfactory, since it disregards the
underlying (potentially non-linear) cross relatedness amongst multiple tasks, that is
to say, it does not take advantage of all the information contained in the data.

Intuitively, when there are relations between the tasks to learn, it can be advan-
tageous to learn all tasks simultaneously. This motivated the introduction of the
multi-task learning paradigm that exploits the correlations amongst multiple tasks by
learning them simultaneously rather than individually [12, 41]. There has been abun-
dant literature on multi-task learning showing that the performance indeed improves
when the tasks are related [3, 4, 6, 12, 15, 16, 26, 42]. There have also been various
attempts to theoretically study multi-task learning, see [6–10, 26].

Based on the minimization of regularization functionals, the kernel based learning
methods, such as Support Vector Machine (SVM) [45, 46], have been successfully
used in the past for single-task learning. In order to generalize the kernel based learn-
ing methods from single-task to multi-task learning, the regularized multi-task learn-
ing (RMTL) is proposed by Pontil & its co-workers [11, 20, 21, 32] by following the
intuition of hierarchical Bayes [1, 5, 26], in which the kernel is a matrix-valued func-
tion. Similar to SVM, RMTL is also characterized by convex quadratic programming
(QP) problem.

By changing the inequality constraints in the SVM by the equality ones, the
Least-Squares SVM (LS-SVM) [36, 38, 40] replaces convex QP problem with convex
linear system solving problem, thus largely speeding up training.With this advantage,
certain problems become much more tractable, model selection using leave-one-out
(LOO) procedure for example [13, 14]. Furthermore, it has been shown through
a meticulous empirical study that the generalization performance of the LS-SVM
is comparable to that of the SVM [44, 52]. Van Gestel et al. [43] also established
the equivalence of LS-SVM with a particular form of regularized kernel Fisher
discriminant (KFD) method [33]. Therefore, LS-SVM has been attracting extensive
attentions during the past few years, such as [2, 49, 50] and references therein.

In this paper, we develop a multi-task learning method for LS-SVM, named as
multi-task LS-SVM (MTLS-SVM), for both classification and regression problems.
Similar to LS-SVM, one only solves a convex linear system in the training phrase, too.
What’s more, an efficient training algorithm, which effectively employs the Krylow
methods, is given. Our previous work [50, 51] restricts us to (multi-output) regression
setting, but in this study we unify the classification and regression problems in an
algorithm.

The organization of the rest of this paper is as follows. After LS-SVM for
classification and regression problems is briefly described in Section 2, a novel multi-
task learning approach, MTLS-SVM, is proposed in Section 3, and some properties
and an efficient training algorithm are also described in this section. In Section 4,
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experimental results on school and dermatology data sets show that MTLS-SVM
performs better than existing multi-task learning methods and largely outperforms
single-task LS-SVM, and Section 5 concludes this work.

Notations The following notations will be used in this study. Let R be the set
of real numbers and R+ the subset of positive ones. For every n ∈ N, the set of
positive integers, we let Nn = {1, 2, · · · , n}. A vector will be written in lower-case
letters x ∈ Rd with xi as its elements. The transpose of x is written as xT. The vector
1d = [1, 1, · · · , 1]T ∈ R

d and 0d = [0, 0, · · · , 0]T ∈ R
d. The inner product between

vectors x ∈ R
d and z ∈ R

d is defined as xTz = ∑d
k=1 xkzk.

Matrices are denoted by capital letters A ∈ R
m×n with ai, j as its elements. The

transpose of A is written as AT. If A is an m× n matrix with all zeros or ones, it is
denoted directly as 0m×n or 1m×n. The identity matrix of dimension m×m is written
as Im. The function blockdiag(A1,A2, · · · ,An) or blockdiag(x1, x2, · · · , xn) creates
a block diagonal matrix, having A1,A2, · · · , An or x1, x2, · · · , xn as main diagonal
blocks, with all other blocks being zero matrices/vectors.

ϕ : Rd → R
nh is a mapping to some higher (maybe infinite) dimensional Hilbert

spaceH (also known as feature space) with nh dimensions. κ(·, ·) is a kernel function
meeting the Mercer’s theorem [45, 46]. The indicator function sgn(x) = +1 if x ≥ 0,
−1 otherwise.

2 Least-Squares Support Vector Machine (LS-SVM)

In this section, we give a brief summary on basic principles of LS-SVM for
classification and regression problem. The classification or regression problem is
regarded as finding the mapping between an incoming vector x ∈ Rd and an observ-
able output y ∈ {−1,+1} or y ∈ R from a given set of independent and identically
distributed (i.i.d.) samples, i.e., {(xi, yi)}ni=1 with R

d × {−1,+1} or (xi, yi) ∈ R
d+1. For

convenience, let y = (y1, y2, · · · , yn)T.

2.1 Classification problem

LS-SVM solves the classification problem by finding w ∈ R
nh and b ∈ R that mini-

mizes the following objective function with constraint [38, 40]:

minJ (w, � ) = 1

2
wTw+ γ

1

2
�T� (1)

s.t. ZTw+ by = 1n − � (2)

where Z = (y1ϕ(x1), y2ϕ(x2), · · · , ynϕ(xn)) ∈ R
nh×n, � = (ξ1, ξ2, · · · , ξn)T ∈ R

n is a
vector consisting of slack variables, and γ ∈ R+ is a positive real regularized
parameter.

The Lagrangian function for the problem (1) and (2) is

L(w,b , � ,�) = J (w, � )− �T(ZTw+ by− 1n + � ) (3)
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where � = (α1, α2, · · · , αn)
T ∈ R

n is a vector consisting of Lagrange multipliers. The
Karush–Kuhn–Tucker (KKT) conditions for optimality yield the following set of
linear equations:

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂L
∂w

= 0 ⇒ w = Z�

∂L
∂b

= 0 ⇒ �Ty = 0

∂L
∂�

= 0 ⇒ � = γ �

∂L
∂�

= 0 ⇒ ZTw+ by− 1n + � = 0n

(4)

By eliminating w and � , one can obtain the following linear system:

[
0 yT

y H

] [
b
�

]

=
[

0
1n

]

(5)

with the positive definite matrix H = �+ 1
γ
In ∈ R

n×n. Here, � = ZTZ ∈ R
n×n is

defined by its elements ωi, j = yiy jϕ(xi)Tϕ(x j) = yiy jκ(xi, x j) for ∀(i, j) ∈ Nn ×Nn.
Let the solution of (5) be �∗ = (α∗

1 , α
∗
2 , · · · , α∗

l )
T and b ∗. Then, the corresponding

decision function is

f (x) = sgn
(
ϕ(x)Tw∗ + b ∗) = sgn

(
ϕ(x)TZ�∗ + b ∗)

= sgn

(
n∑

i=1

α∗
i ϕ(x)

Tϕ(xi)+ b ∗
)

= sgn

(
n∑

i=1

α∗
i κ(x, xi)+ b ∗

)

(6)

2.2 Regression problem

LS-SVM solves the regression problem by finding w ∈ R
nh and b ∈ R that minimizes

the following objective function with constraints [36, 40]:

minJ (w, � ) = 1

2
wTw+ γ

1

2
�T� (7)

s.t. y = ZTw+ b1n + � (8)

where Z = (ϕ(x1), ϕ(x2), · · · , ϕ(xn)) ∈ R
nh×n, � = (ξ1, ξ2, · · · , ξn)T ∈ R

n is a vector
consisting of slack variables, and γ ∈ R+ is a positive real regularized parameter.

The Lagrangian function for the problem (7) and (8) is

L(w,b , � ,�) = J (w, � )− �T(ZTw+ b1n + � − y) (9)
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where � = (α1, α2, · · · , αn)
T ∈ R

n is a vector consisting of Lagrange multipliers. The
KKT conditions for optimality yield the following set of linear equations:

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂L
∂w

= 0 ⇒ w = Z�

∂L
∂b

= 0 ⇒ �T1n = 0

∂L
∂�

= 0 ⇒ � = γ �

∂L
∂�

= 0 ⇒ ZTw+ b1n + � − y = 0n

(10)

By eliminating w and � , one can obtain the following linear system:
[

0 1Tn
1n H

] [
b
�

]

=
[

0
y

]

(11)

with the positive definite matrix H = �+ 1
γ
In ∈ Rn×n. Here, � = ZTZ ∈ Rn×n is

defined by its elements ωi, j = ϕ(xi)Tϕ(x j) = κ(xi, x j) for ∀(i, j) ∈ Nn ×Nn.
Let the solution of (11) be �∗ = (α∗

1 , α
∗
2 , · · · , α∗

l )
T and b ∗. Then, the corresponding

decision function is

f (x) = ϕ(x)Tw∗ + b ∗ = ϕ(x)TZ�∗ + b ∗

=
n∑

i=1

α∗
i ϕ(x)

Tϕ(xi)+ b ∗ =
n∑

i=1

α∗
i κ(x, xi)+ b ∗ (12)

2.3 Efficient training algorithm

On closer examination, one can easily find that it is very difficult to solve directly the
linear system (5) or (11), since their coefficient matrix are not positive definite. This
can be overcome by reformulating (5) or (11) into the following one [39, 40]

[
s 0Tn
0n H

][
b

� + bH−1d1

]

=
[
dT1H

−1d2

d2

]

(13)

where s = dT1H
−1d1 ∈ R+, d1 = y/1n and d2 = 1n/y for the classification/regression

problem. This new linear system (13) is positive definite, which opens many opportu-
nities for using fast and efficient numerical optimization methods. In fact, the solution
of the system (5) or (11) can be found in the following three steps [39, 40]:

1. Solve �, � from H� = d1 and H� = d2, respectively. Let the corresponding
solution be �∗, �∗;

2. Compute s = dT1 �
∗;

3. Find solution: b ∗ = �∗Td2/s, �∗ = �∗ − b ∗�∗.

Therefore, the solution of the training procedure can be found by solving two
sets of linear equations with the same positive definite coefficient matrix H ∈ Rn×n.
Since H is symmetric positive-definite, one typically first finds the Cholesky decom-
position H = LLT [24, 34, 35]. Then since L is lower triangular, solving the system
is simply a matter of applying forward and backward substitution. Other commonly
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used methods include the conjugate gradient, single value decomposition (SVD) or
eigendecomposition, etc.

3 Multi-Task LS-SVM (MTLS-SVM)

Suppose we havem learning tasks. For ∀i ∈ Nm, we have ni training data {xi, j, yi, j}nij=1,
where xi, j ∈ R

d and yi, j ∈ {−1,+1} for classification problem or yi, j ∈ R for regres-
sion problem. Thus, we have n = ∑m

i=1 ni training data. For convenience, let y =
(yT1 , y

T
2 , · · · , yTm)T with yi = (yi,1, yi,2, · · · , yi,ni )T for ∀i ∈ Nm.

In order to formulate the intuition of Hierarchical Bayes [1, 5, 26], we assume
all wi ∈ Rnh (∀i ∈ Nm) can be written as wi = w0 + vi, where the vectors vi ∈ Rnh are
“small” when the different tasks are similar to each other, otherwise the mean vector
w0 ∈ R

nh are “small”. That is to say, w0 carries the information of the commonality
and vi(i ∈ Nm) carries the information of the specialty. Figure 1 illustrates the
intuition underling the MTLS-SVM.

3.1 Classification problem

MTLS-SVM solves the classification problem by finding w0 ∈ R
nh , {vi}mi=1 ∈ R

nh×m,
and b = (b 1,b 2, · · · ,bm)

T ∈ R
m simultaneously that minimizes the following objec-

tive function with constraints:

minJ (w0, {vi}mi=1, {� i}mi=1) =
1

2
wT

0 w0 + 1

2

λ

m

m∑

i=1

vTi vi + γ
1

2

m∑

i=1

�Ti � i (14)

s.t. ZT
i (w0 + vi)+ b iyi = 1ni − � i, i ∈ Nm (15)

where for ∀i ∈ Nm, � i = (ξi,1, ξi,2, · · · , ξi,ni)T ∈ Rni , Zi = (yi,1ϕ(xi,1), yi,2ϕ(xi,2), · · · ,
yi,niϕ(xi,ni )) ∈ Rnh×ni , and λ, γ ∈ R+ are two positive real regularized parameters.
And we let Z = (Z1,Z2, · · · ,Zm) ∈ R

nh×n.

w1
w2 wm

w0

· · ·

w1 w2
wm

w0

· · ·

(a) Classification Problem (b) Regression Problem

Fig. 1 Illustration of the intuition underlying the MTLS-SVM
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The Lagrangian function for the problem (14) and (15) is

L(w0, {vi}mi=1,b, {� i}mi=1, {�i}mi=1)

= J (w0, {vi}mi=1, {� i}mi=1)−
m∑

i=1

�T
i (Z

T
i (w0 + vi)+ b iyi − 1ni + � i) (16)

where ∀i ∈ Nm, �i = (αi,1, αi,2, · · · , αi,ni )
T consists of Lagrangemultipliers. Andwe let

� = (�T
1 ,�

T
2 , · · · ,�T

m)
T ∈ R

n. The KKT conditions for optimality yield the following
set of linear equations:

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂L
∂w0

= 0 ⇒ w0 = Z�

∂L
∂vi

= 0 ⇒ vi = m
λ
Zi�i,∀i ∈ Nm

∂L
∂b i

= 0 ⇒ �T
i yi = 0,∀i ∈ Nm

∂L
∂� i

= 0 ⇒ �i = γ � i,∀i ∈ Nm

∂L
∂�i

= 0 ⇒ ZT
i (w0 + vi)+ b iyi − 1ni + � i = 0ni, ∀i ∈ Nm

(17)

Similar to LS-SVM for the classification problem in Section 2.1, by eliminating
w0, {vi}mi=1 and {� i}mi=1, one can obtain the following linear system:

[
0m×m AT

A H

][
b
�

]

=
[
0m
1n

]

(18)

where A = blockdiag(y1, y2, · · · , ym) ∈ {−1,+1}n×m, the positive definite
matrix H = �+ 1

γ
In + m

λ
B ∈ R

n×n, � = ZTZ ∈ R
n×n, and B = blockdiag(�1,

�2, · · · , �m) ∈ R
n×n with �i = ZT

i Zi ∈ R
ni×ni .

Let the solution of (18) be �∗ = (�∗T
1 ,�∗T

2 , · · · ,�∗T
m )T with �∗

i = (α∗
i,1, α

∗
i,2, · · · ,

α∗
i,ni )

T and b∗ = (b ∗
1,b

∗
2, · · · , b ∗

m)
T. Then, the corresponding decision function for the

task i ∈ Nm is

fi(x) = sgn
(
ϕ(x)T(w∗

0 + v∗i )+ b ∗
i

)

= sgn
(
ϕ(x)T(Z�∗ + m

λ
Zi�

∗
i )+ b ∗

i

)

= sgn

⎛

⎝
m∑

i′=1

ni′∑

j=1

α∗
i′, jκ(xi′, j, x)+

m
λ

ni∑

j=1

α∗
i, jκ(xi, j, x)+ b ∗

i

⎞

⎠ (19)
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3.2 Regression problem

MTLS-SVM solves the regression problem by finding w0 ∈ R
nh , {vi}mi=1 ∈ R

nh×m, and
b = (b 1,b 2, · · · ,bm)

T ∈ R
m simultaneously that minimizes the following objective

function with constraints:

minJ (w0, {vi}mi=1, {� i}mi=1) =
1

2
wT

0 w0 + 1

2

λ

m

m∑

i=1

vTi vi + γ
1

2

m∑

i=1

�Ti � i (20)

s.t. yi = ZT
i (w0 + vi)+ b i1ni + � i, i ∈ Nm (21)

where for ∀i ∈ Nm, � i = (ξi,1, ξi,2, · · · , ξi,ni )T ∈ R
ni , Zi = (ϕ(xi,1), ϕ(xi,2), · · · ,

ϕ(xi,ni)) ∈ Rnh×ni , and λ, γ ∈ R+ are two positive real regularized parameters.
And we let Z = (Z1,Z2, · · · ,Zm) ∈ R

nh×n.
The Lagrangian function for the problem (20) and (21) is

L(w0, {vi}mi=1,b, {� i}mi=1, {�i}mi=1)

= J (w0, {vi}mi=1, {� i}mi=1)−
m∑

i=1

�T
i (Z

T
i (w0 + vi)+ b i1ni + � i − yi) (22)

where ∀i ∈ Nm, �i = (αi,1, αi,2, · · · , αi,ni )
T consists of Lagrangemultipliers. Andwe let

� = (�T
1 ,�

T
2 , · · · ,�T

m)
T ∈ Rn. The KKT conditions for optimality yield the following

set of linear equations:

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂L
∂w0

= 0 ⇒ w0 = Z�

∂L
∂vi

= 0 ⇒ vi = m
λ
Zi�i,∀i ∈ Nm

∂L
∂b i

= 0 ⇒ �T
i 1ni = 0,∀i ∈ Nm

∂L
∂� i

= 0 ⇒ �i = γ � i,∀i ∈ Nm

∂L
∂�i

= 0 ⇒ ZT
i (w0 + vi)+ b i1ni + � i − yi = 0ni, ∀i ∈ Nm

(23)

Similar to LS-SVM for the regression problem in Section 2.2, by eliminating
w0, {vi}mi=1 and {� i}mi=1, one can obtain the following linear system:

[
0m×m AT

A H

][
b
�

]

=
[
0m
y

]

(24)

where A = blockdiag(1n1, 1n2 , · · · , 1nm) ∈ R
n×m, the positive definite matrix H =

�+ 1
γ
In + m

λ
B ∈ R

n×n, � = ZTZ ∈ R
n×n, and B = blockdiag(�1,�2, · · · , �m) ∈

R
n×n with �i = ZT

i Zi ∈ R
ni×ni .
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Let the solution of (24) be �∗ = (�∗T
1 ,�∗T

2 , · · · ,�∗T
m )T with �∗

i = (α∗
i,1, α

∗
i,2, · · · ,

α∗
i,ni )

T and b∗ = (b ∗
1,b

∗
2, · · · , b ∗

m)
T. Then, the corresponding decision function for the

task i ∈ Nm is

fi(x) = ϕ(x)T(w∗
0 + v∗i )+ b ∗

i

= ϕ(x)T
(
Z�∗ + m

λ
Zi�

∗
i

)
+ b ∗

i

=
m∑

i′=1

ni′∑

j=1

α∗
i′, jκ(xi′, j, x)+

m
λ

ni∑

j=1

α∗
i, jκ(xi, j, x)+ b ∗

i (25)

3.3 Some properties

It is easy to see from (17) and (23) that the mean vector w0 ∈ R
nh and the vectors

{vi}mi=1 ∈ R
nh×m meet the following relationship:

w0 = λ

m

m∑

i=1

vi (26)

In other words, w0 is a linear combination of v1, v2, · · · , vm. As a 3-task learning
example, Fig. 2 visualizes the relationship between w0 and {vi}3

i=1. Since for ∀i ∈ Nm,
wi is assumed to be wi = w0 + vi, wi can also be expressed as a linear combination of
v1, v2, · · · , vm. This suggests that one can obtain an equivalent optimization problem
with constraints involving only the {vi}mi=1 and b for the respective classification and
regression problems as follows.

minJ ({vi}mi=1, {� i}mi=1) =
1

2

λ2

m2

m∑

i=1

m∑

j=1

vTi v j + 1

2

λ

m

m∑

i=1

vTi vi + γ
1

2

m∑

i=1

�Ti � i (27)

s.t.

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

ZT
i

(
λ

m

m∑

i′=1

vi′ + vi

)

+ b iyi = 1ni − � i, i ∈ Nm, classification problem

yi = ZT
i

(
λ

m

m∑

i′=1

vi′ + vi

)

+ b i1ni + � i, i ∈ Nm, regression problem

(28)

Fig. 2 The relationship
between w0 and {vi}3

i=1

v1

v2

v3

w0
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From (27), one can see that our MTLS-SVM tries to find a trade off between
small size vectors for each task,

∑m
i=1 v

T
i vi, and closeness of all vectors to the average

vector,
∑m

i=1

∑m
j=1 v

T
i v j. But (1) and (7) only tries to find small size vectors for each

task, which results in decoupling between the different tasks.
Similar to LS-SVM again, one drawback of MTLS-SVM in comparison with

RMTL is the lack of sparseness in the solution error, which is clear from the fact
that �i = γ � i (∀i ∈ Nm). However, there are several possible ways to can sparsify
the MTLS-SVM. For example, the simple heuristic is to remove the samples corre-
sponding to small |αi, j|, since it is very possible that these samples are less relevant
for the construction of the model, in analogy with RMTL where zero αi, j values do
not contribute the model. For more elaborate and detailed surveys on sparseness by
pruning, we refer the readers to [40].

3.4 Efficient training algorithm

Thematrix in (18) or (24) is of dimension (n+m)× (n+m), and it is usually density.
For large values of n+m, this matrix cannot be stored in memory, therefore an
iterative solution method for solving (18) or (24) is preferred. For now, there are
many iterative approaches to solve a set of linear equations [24, 34, 35], such as
Cholesky factorization, successive overrelaxation (SOR), Krylow methods (conju-
gate gradient, block-conjugate gradient), and so on. It has been shown that Krylow
methods show the best performance for large data sets [25]. However, Krylow
methods are only applicable to solving Ax = B with A ∈ R

n×n symmetric positive
definite and B ∈ R

n. Since the matrix in (18) or (24) is symmetric, but not positive
definite, it cannot be solved in this form by Krylow methods.

Both (18) and (24) are of the form
[
0m×m AT

A H

][
b
�

]

=
[
d1

d2

]

(29)

where d1 = 0m, and d2 = 1n/y for the classification/regression problem. Equation
(29) is equivalent to solving

[
S 0n×n

0m×m H

][
b

H−1Ab+ �

]

=
[−d1 +ATH−1d2

d2

]

(30)

with S = ATH−1A ∈ R
m×m. It is very easy to show that S is a positive definite matrix.

In this way, this new linear system (30) is positive definite, whose solution can be
found in the following three steps:

1. Sovle �, � fromH� = A andH� = d2 with Krylowmethods, respectively. Let the
corresponding solution be �∗, �∗;

2. Calculate S = AT�∗;
3. Find solution: b∗ = S−1�∗Td2,�

∗ = �∗ − �∗b∗.

Therefore, again similar to LS-SVM, the solution of the training procedure can be
found by solving two sets of linear equations with the same positive coefficient matrix
H ∈ Rn×n. What’s more, since the number of tasks m is usually very small relative to
the number of samples n, one can easily obtain the inverse of S ∈ R

m×m just using
matrix multiplications.
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4 Experiments and discussions

Whether in (6) and (12) or (19) and (25), the kernel function, which should meet the
Mercer’s theorem, is involved. There are many many candidates, such as the linear
kernel: κ (x, z) = xTz; the polynomial kernel: κ (x, z) = (

p1xTz+ p2
)p3

, p1 > 0; the
Gaussian (RBF, radial basis function) kernel: κ (x, z) = exp

(−p ‖ x− z ‖2
)
, p > 0;

the Sigmoid kernel: κ (x, z) = tanh
(
p1xTz +p2) and so on.

Here, the linear and RBF kernel functions are adopted. The reasons are four-fold:
(a) the linear kernel function is a special case of RBF kernel function [29], but the
cost of calculation is the lowest, so it is suited to solve large scale problems; (b) The
Sigmoid kernel function is not positive definite, and for certain parameters, and the
Sigmoid kernel function behaves like RBF kernel function [31]; (c) Relatively, there
are more parameters in the polynomial kernel function so that it is more difficult
for model selection. In addition, the polynomial kernel function has also numerical
difficulties, such as overflow or underflow; (d) The RBF kernel function possesses
good smoothness properties, which are usually preferred in the case one does not
have a prior knowledge about the problem at hand [23, 37].

Finally, in order to identify proper parameters, the grid search [48] is used. Let
γ ∈ {2−5, 2−3, · · · , 215}, λ ∈ {2−10, 2−8, · · · , 210} and p ∈ {2−15, 2−13, · · · , 23}. For all
possible combinations (γ, λ, p) with RBF kernel function or (γ, λ) with linear kernel
function, the explained variance (EV) [6] for school data set1 or average classification
error for dermatology data set2 is calculated using LOO procedure. Once the optimal
value for γ, λ or p lies at the border of the search space, the search space for the pa-
rameter that is at the border is increased by the same multiplicative step as described
above (2±2). Thus, an optimal triple (γ ∗, λ∗, p∗) or pair (γ ∗, λ∗) can be determined.
We have implemented all related approaches in MATLAB R2010a on an IBM 3850
M2. The corresponding toolbox can be available from the first author upon request
for academic use.

4.1 School data set

This data set comes from the Inner London Education Authority (ILEA), consisting
of examination records of 15,362 students from 139 secondary schools in years 1985,
1986 and 1987. The goal is to predict the exam scores of the students based on
the following inputs in Table 1. The categorical variables are expressed with binary
(dummy) variables, so the total number of inputs for each student in each of the
schools was 27. Each school is considered to be “one task”, hence we have 139 tasks
in total.

We randomly split the data into training (75% of the data, hence around 70
students per school on average) and test (the remaining 25% of the data, hence
around 40 students per school on average) data. This procedure is repeated 10 times.
The EV of the test data is utilized to measure the generalization performance, so
that we can have a direct comparison with RMTL [11, 20, 21, 32] and Bayesian multi-
task learning (BMTL) [6]. The EV in [6] is defined to be the total variance of the data

1School data set can be available online from http://multilevel.ioe.ac.uk/intro/datasets.html.
2Dermatology data set can be available online from http://www.ics.uci.edu/ mlearn/MLRespository.
html.

http://multilevel.ioe.ac.uk/intro/datasets.html
http://www.ics.uci.edu/~mlearn/MLRespository.html
http://www.ics.uci.edu/~mlearn/MLRespository.html
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Table 1 Variables in school data set and their codings

ID Description Coding Input/output

1 Year 1985 = 1; 1986 = 2; 1987 = 3 Input
2 Exam score Numeric score Output
3 % FSM Percent of students eligible Input

for free school meals
4 % VR1 band Percent of students in school Input

in VR band 1
5 Gender Male = 0; Female = 1 Input
6 VR band of student VR1 = 2; VR2 = 3; VR3 = 1 Input

ESWIa = 1; African = 2; Arab = 3;
Bangladeshi = 4; Caribbean = 5;

7 Ethnic group of student Greek = 6; Indian = 7; Pakistani = 8; Input
S.E. Asian = 9; Turkish = 10; Other = 11

8 School gender Mixed = 1; Male = 2; Female = 3 Input
9 School denomination Maintained = 1; Church of England = 2; Input

Roman Catholic = 3
aESWI: Students born in England, Scotland, Wales or Ireland

minus the sum-squared error on the test set as a percentage of the total data variance,
which is a percentage version of the standard R2 error measure for regression for the
test data. Finally, the linear kernel function is used for each of the task in MTLS-
SVM, but the RBF kernel function is used in LS-SVM, since LS-SVMwith the linear
kernel function gives the worse performance, which is not reported here.

The results for this experiment are reported in Table 2. Through comparing
columns 1 and other columns in Table 2, one can see the obvious advantage of
learning all tasks simultaneously instead of learning them one by one. Furthermore,
even MTLS-SVM with the simple linear kernel significantly outperforms LS-SVM
with the RBF kernel function. The results from last three columns in Table 2 show
the efficiency of our proposed MTLS-SVMmethod.

4.2Dermatology data set

This data set consists of 366 differential diagnosis of erythemato-squamous in
dermatology. The goal is to diagnose one of six dermatological diseases (psoriasis,
seboreic dermatitis, lichen planus, pityriasis rosea, cronic dermatitis, and pityriasis
rubra pilaris) based on 33 clinical and histopathological attributes. That is to say, this
is a multi-class (6-class) problem.As in [4, 22, 28], we convert this problem to 6 binary
one-versus-rest classification problems, each of which is considered to be “one task”.
Hence we have six tasks in total. This data set is divided into ten random splits of 200
training and 166 testing samples. The classification error of the test data across these
splits is utilized to measure the generalization performance.

Table 2 Performance of the methods for the school data set

LS-SVM MTLS-SVM RMTL [11, 20, 21, 32] BMTL [6]

9.8 ± 0.6 38.16 ± 0.3 34.32 ± 0.4 34.37 ± 0.4
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Table 3 Performance of the methods for the dermatology data set

LS-SVM MTLS-SVM MTL-FEAT (RBF) [4] Independent (RBF) [4]

7.9 ± 3.2 8.2 ± 2.7 9.5 ± 3.0 9.8 ± 3.1

We report the misclassification error on test data in Table 3. From Table 3, one
can find that the performance of MTLS-SVM is similar to that of LS-SVM. This
phenomenon is also observed in [4] for MTL-FEAT (RBF) and independent (RBF).
Hence Argyrious et al. [4] conjecture that these tasks are weakly related to each
other or unrelated, and their experimental results reinforce their hypothesis. Table 3
also indicates that MTLS-SVM does not “hurt” the performance by simultaneously
learning all tasks in such a case.

5 Conclusions

It has been shown through a meticulous empirical study that the generalization
performance of LS-SVM is comparable to that of SVM. In order to generalize LS-
SVM from single-task to multi-task learning, inspired by the regularized multi-task
learning, this study proposes a novel multi-task learning approach, multi-task LS-
SVM (MTLS-SVM). Similar to LS-SVM, one only solves a convex linear system
in the training phrase, too. What’s more, we unify the classification and regression
problems in an efficient training algorithm, which effectively employs the Krylow
methods.

As for large scale problem, Keerthi and Shevades [30] extends the well-known
SMO (Sequential Minimal Optimization) algorithm of SVM to LS-SVM. With the
help of Nyström method [47], Brabanter et al. [18] approximates the eigendecom-
position of the Gram matrix, thus LS-SVM can be solved in input space rather than
in feature space. All these methods can be directly applied to MTLS-SVM. Another
way to say this is that most of the approaches for solving LS-SVM can be directly
borrowed to solve MTLS-SVM.
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