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Abstract 
Text classification is the task of assigning predefined categories to natural language documents, and it can provide conceptual views 

of document collections. The naïve Bayes (NB) classifier is a family of simple probabilistic classifiers based on a common assumption 

that all features are independent of each other, given the category variable, and it is often used as the baseline in text classification. 

However, classical NB classifiers with multinomial, Bernoulli and Gaussian event model are not fully Bayesian. This study proposes 

three Bayesian counterparts, where it turns out that classical NB classifier with Bernoulli event model is equivalent to Bayesian 

counterpart. Finally, experimental results on 20 newsgroups and WebKB datasets show that the performance of Bayesian NB 

classifier with multinomial event model is similar to that of classical counterpart, but Bayesian NB classifier with Gaussian event 

model is obviously better than classical counterpart.  
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1. Introduction 

Text classification [1] is known as the task of assigning one or more predefined categories to natural language 

documents. Instead of manually classifying documents or hand-making automatic classification rules, many machine 

learning algorithms are used to automatically classify unseen documents on the basis of human-labelled training 

documents. Given the growing volume of online documents available through World Wide Web (WWW), news feeds, 

electronic mail, and digital libraries, this task is of great practical significance.  

The naïve Bayes (NB) classifier is a family of simple probabilistic classifiers based on a common assumption that all 

features are independent of each other, given the category variable [2]. The different NB classifiers differ mainly by the 

assumptions they make regarding the distribution of features. The assumptions on distribution of features are called 

event models of the NB classifier [3]. For discrete features, multinomial or Bernoulli distributions are popular. These 

assumptions lead to two distinct models, which are often confused [4][5]. When dealing with continuous features, a 

typical assumption is Gaussian distribution.  

Despite apparently over-simplifier assumptions, NB classifier works quite well in many complex real-world 

applications, such as text classification [6][7], keyphrase extraction [8], medical diagnosis [9]. This paradox is explained 

by Zhang that true reason for its competitive performance in classification lies in the dependence distribution [10]. In 

more details, how the local dependence of a feature distributes in each category, evenly or unevenly, and how the local 

dependencies of all features work together, consistently (supporting a certain category) or inconsistently (cancelling 

each other out), plays a crucial role.  

As one of the most efficient inductive learning algorithms, NB classifier is often used as a baseline in text 

classification because it is fast and easy to implement. Moreover, with appropriate pre-processing, it is competitive with 

more advanced methods including support vector machines (SVMs) [4]. However, classical NB classifier, as standardly 

presented, is not fully Bayesian. At least not in the sense that a posterior distribution over parameters is estimated from 

training documents and then used for predictive inference for new document. Inspired by the success of Bayesian 

counterparts of many classical methods, Bayesian NB classifiers to text classification are studied in this work with the 

following contributions.  
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 Bayesian NB classifiers with multinomial, Bernoulli and Gaussian event model are proposed in the paper, 

where it turns out that classical NB classifier with Bernoulli event model is equivalent to Bayesian counterpart.  

 Bayesian NB classifier with multinomial event model is similar to that of classical counterpart, but Bayesian 

NB classifier with Gaussian event model is obviously better than classical counterpart. 

The rest of this paper is organized as follows. Section 2 gives an overview of the related works in classical NB 

classifier and Bayesian methods. After classical NB classifier is briefly described in Section 3, a fully Bayesian NB 

classifier is proposed in Section 4. In Section 5, experimental results on 20 newsgroup data show that Bayesian NB 

classifier has similar performance with classical NB classifier, and Section 6 concludes this work. 

2. Related work 

In practice, the conditional independence assumption in NB classifier is rarely true, and as a result its probability 

estimates are often suboptimal. In order to reduce inaccuracies from naïve assumption, many approaches are proposed in 

literature. Such methods can be grouped into two categories. The first category comprises semi-naïve Bayes methods 

[11][12]. These methods are aimed at enhancing NB’s accuracy by relaxing the conditional independence assumption. 

The second category includes feature weighting methods [13], though feature weighting is primarily been viewed as a 

means of increasing the influence of highly predictive feature and discounting features that have little predictive value 

[14][15].  

Compared to classical methods, Bayesian methods [16] provide a natural and principled way of combining prior 

information with data, within a solid decision theoretical framework. One can incorporate past information about a 

parameter and form a prior distribution for future analysis. When new observations become available, the previous 

posterior distribution can be used as a prior. All inferences logically follow from Bayes’ theorem. Therefore, many 

classical approaches are reformulated within a Bayesian framework, such as hidden Markov model (HMM) [17], 

principal component analysis (PCA) [18], SVM [19], multidimensional scaling (MDS) [20] and many others.  

However, there is not a Bayesian treatment of classical NB classifier. To the best of my knowledge, only Rennie 

described the Bayesian NB classifier in his master thesis, and he found that Bayesian NB classifier performed worse 

than classical NB classifier [21]. In fact, Rennie’s master thesis only considered multinomial event model, and did not 

care about Bernoulli and Gaussian event models. Furthermore, Dirichlet hyper-parameters were not tuned, which 

resulted in worse performance. In order to quantify the trade-off between various classification decisions and predict the 

risk that accompany such decisions, Di Nunzio put the classification decision of NB classifiers with multinomial, 

Gaussian, Bernoulli and Poisson event models within the framework of Bayesian decision theory [22], but it is not still 

fully Bayesian. It is worth noting that cost-sensitive NB classifiers are also applicable to Bayesian NB classifiers.  

3. Classical Naïve Bayes classifier 

 

Figure 1. Decision-making procedure with the naïve Bayes classifier. 

 

Accepted for Publication
By the Journal of Information Science: http://jis.sagepub.co.uk 



Xu 3 

 

Journal of Information Science, 2016, pp. 1-12 © The Author(s), DOI: 10.1177/0165551510000000 

 

 

In the NB classifier, every feature 𝑤𝑛 gets a say in determining which category 𝑐 ∈ ℕ𝐶 = {1,⋯ , 𝐶} should be assigned 

to a unseen document �⃗⃗� = (𝑤1, ⋯ , 𝑤𝑁). The features for text classification are usually words, and the number of unique 

words can be quite large. To choose a category 𝑐  from ℕ𝐶  for �⃗⃗� , NB classifier begins by calculating the prior 

probability Pr⁡(𝑐) of each category 𝑐 ∈ ℕ𝐶 , which is determined by assuming equiprobable classes, or checking the 

frequency of each category in the training document set. The contribution from each feature is then combined with this 

prior probability, to arrive at a likelihood estimate for each category. Figure 1 illustrates the decision-making procedure. 

This is known as the maximum a posteriori (MAP) decision rule. It can be defined formally as follows.  

 𝑐 = arg⁡max𝑐∈ℕ𝐶
𝑝(𝑐|�⃗⃗� ) = arg⁡max𝑐∈ℕ𝐶

Pr⁡(𝑐)𝑝(�⃗⃗� |𝑐) (1) 

As a matter of fact, NB classifier can be viewed as a generative process. To generate a document, NB classifier first 

choose a category for it, and then it generate each of the document’s features (such as words) independently according 

to a category-specific distribution. Figure 2 illustrate the generative process. In this figure, an arrow indicates a 

conditional dependency between variables.  

Given a training document set 𝒟 = {(�⃗⃗� 𝑚, 𝑐𝑚)}𝑚=1
ℓ  with 𝑁𝑚 word tokens from a given vocabulary of size V in the 

document m, 𝜗𝑐 = Pr⁡(𝑐) can be easily estimated by counting the number of documents ℓ𝑐 for each category 𝑐 ∈ ℕ𝐶 in 

the set 𝒟 by adding a smoothing prior   0 as follows. However, in order to estimate 𝑝(�⃗⃗� |𝑐), one must assume a 

distribution or generate non-parametric models for the features, i.e., event model. 

 �̂�𝑐 =
ℓ𝑐+𝛼

ℓ+𝐶𝛼
 (2) 

Setting 𝛼 = 1 is called Laplace smoothing, while 𝛼 < 1 is called Lidstone smoothing [23].  

3.1. Multinomial Event Model 

With a multinomial event model, each document is represented by the set of word occurrences from the document. That 

is to say, the order of words is not captured. It yields the familiar bag of words representation for documents. It is not 

difficult to see that each document can also viewed as a histogram, with each element counting the number of 

occurrence of the resulting word in the document. Following the model, words for each category 𝑐 ∈ ℕ𝐶  are usually 

generated by a separate multinomial (�⃗� 𝑐) where 𝜑𝑐,𝑣 = Pr(𝑣|𝑐) is the probability of the category c generating the word 

v. Define 𝑛(𝑣) to be the count of the number of times word v occurs in a particular document �⃗⃗� . The likelihood of 

observing a document �⃗⃗�  is given by 

 𝑝(�⃗⃗� |𝑐) =
(∑ 𝑛(𝑣)𝑉

𝑣=1 )!

∏ 𝑛(𝑣)!𝑉
𝑣=1

∏ 𝜑𝑐,𝑣
𝑛(𝑣)𝑉

𝑣=1  (3) 

Similar to 𝜗𝑐, a smoothed ML can be utilized to estimate 𝜑𝑐,𝑗  as follows. Here, 𝑛𝑐
(𝑣)

 is the number of times word v 

appears in the documents with category c in 𝒟, 𝑛𝑐
(∙)

= ∑ 𝑛𝑐
(𝑣)𝑉

𝑣=1  and 𝛽 ≥ 0 is the smoothing prior.  

 

Figure 2.  Bayesian network graph illustrating the generative process for the naïve Bayes classifier. In this figure, an arrow indicates 

a conditional dependency between variables.  
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 �̂�𝑐,𝑣 =
𝑛𝑐

(𝑣)
+𝛽

𝑛𝑐
(∙)

+𝑉𝛽
 (4) 

3.2. Bernoulli Event Model 

In the Bernoulli event model, each document is represented by a vector �⃗⃗�  of binary features indicating which words 

occur and do not occur in the document. Each element wv is a Boolean expressing the occurrence or absence of the v-th 

term. In other words, features are independent binary variables, and this model does not care about the number of times 

a word occurs in a document. Let 𝜑𝑐,𝑣 = Pr(𝑤𝑣|𝑐) be the probability of the category c generating the word v, then the 

likelihood of a document �⃗⃗�  given a category c is given by  

 𝑝(�⃗⃗� |𝑐) = ∏ 𝜑𝑐,𝑣
𝑤𝑣𝑉

𝑣=1 (1 − 𝜑𝑐,𝑣)
1−𝑤𝑣  (5) 

This event model is especially popular for classifying short texts [5]. It has the benefit of explicitly modelling the 

absence of words. Note that a NB classifier with a Bernoulli event model is not the same as a multinomial NB classifier 

with frequency counts truncated to one. This study estimates each of these class-conditional word probabilities 𝜑𝑐,𝑣 by 

straightforward counting of events, supplemented by a smoothing prior   0, as follows.  

 �̂�𝑐,𝑣 =
𝑚𝑐

(𝑣)
+𝛽

ℓ𝑐+2𝛽
 (6) 

Here, 𝑚𝑐
(𝑣)

 denotes the number of documents with the category c containing the word v.  

3.3. Gaussian Event Model 

In text classification, it is very common that the documents are represented as term-frequency/inverse document 

frequency (TFIDF) vectors. Because the TFIDF value increases proportionally to the number of times a word appears 

in the document (i.e., term frequency, TF), but is offset by the frequency of the word in the corpus (i.e., document 

frequency, DF), which helps to adjust for the fact that some words appear more frequently in general. When dealing 

with continuous data, such as TFIDF vectors, a typical assumption is that the continuous values associated with each 

class are distributed according to a Gaussian distribution. Another common technique is to use binning techniques 

[24][25] to discretize the feature values, to obtain a new set of Bernoulli-distributed features. In fact, the discretization 

may throw away some discriminative information [26].  

According to the model, feature values of terms for each category 𝑐 ∈ ℕ𝐶  are usually generated by a separate 

Gaussian 𝒩(𝜇 𝑐, 𝜎 𝑐
2) where 𝜇 𝑐 and 𝜎 𝑐

2 are the mean and variance vectors of the feature values of words associated with 

category c, respectively. The likelihood of observing a document �⃗⃗�  is given by 

 𝑝(�⃗⃗� |𝑐) = ∏ 𝒩(𝑤𝑣|𝜇𝑐,𝑣 , 𝜎𝑐,𝑣
2 )𝑉

𝑣=1 = ∏
1

√2𝜋𝜎𝑐,𝑣
2

exp⁡(−
(𝑤𝑣−𝜇𝑐,𝑣)2

2𝜎𝑐,𝑣
2 )𝑉

𝑣=1  (7) 

Again, ML can be used to estimate 𝜇 𝑐 and 𝜎 𝑐
2 from the training document set 𝒟 as follows. In practice, if the ratio of 

data variance between words is too small, it will cause numerical errors. To address this problem, we artificially boost 

the variance by 𝜀 = 1.0−9, a small fraction of the standard deviation of the largest dimension.  

 �̂�𝑐,𝑣 =
1

ℓ𝑐
∑ 𝑤𝑚,𝑣𝑚:𝑐𝑚=𝑐  (8) 

 �̂�𝑐,𝑣
2 =

1

ℓ𝑐
∑ (𝑤𝑚,𝑣−�̂�𝑐,𝑣)

2
𝑚:𝑐𝑚=𝑐  (9) 

4. Bayesian multinomial NB classifier 

The NB classifier, as standardly presented in Section 3, is not fully Bayesian. At least not in the sense that a posterior 

distribution over parameters is estimated from training documents and then used for predictive inference for new 

document. This section describes a fully Bayesian NB classifier in more details. The graphical model representation for 
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Bayesian NB classifier is shown in Figure 3. The Bayesian NB classifier can be viewed as a generative process, which 

can be described as follows.  

(1) Draw a Multinomial(𝜗 ) from Dirichlet(𝛼 ).  

(2a) For each category 𝑐 ∈ ℕ𝐶:  

(2a.1) Draw a Multinomial(�⃗� 𝑐) from Dirichlet(𝛽 );  
(2b) For each category 𝑐 ∈ ℕ𝐶:  

        (2b.1) For each term 𝑣 ∈ ℕ𝑉:  

                   (2b.1.1) Draw a Bernoulli(𝜑𝑐,𝑣) from Beta(𝑎𝑣 , 𝑏𝑣);  

(2c) For each category 𝑐 ∈ ℕ𝐶:  

        (2c.1) For each term 𝑣 ∈ ℕ𝑉:  

                   (2c.1.1) Draw a Gaussian(𝜇𝑐,𝑣 , 𝜏𝑐,𝑣) from GaussianGamma(𝜇𝑣, 𝜆𝑣 , 𝑎𝑣 , 𝑏𝑣);  

(3) For each document 𝑚 ∈ ℕℓ:  

      (3.1) Draw a category 𝑐𝑚 from Multinomial(𝜗 );  
      (3.2a) For each word 𝑛 ∈ ℕ𝑁𝑚

 in document m:  

                (3.2a.1) Draw a word 𝑤𝑚,𝑛 from Multinomial(�⃗� 𝑐𝑚
).  

      (3.2b) For each word 𝑣 ∈ ℕ𝑉:  

                (3.2b.1) Draw a Boolean variable x from Bernoulli(𝜑𝑐𝑚,𝑣);  

                (3.2b.2) If x is true, append the word v to document m; discard the word v otherwise. 

      (3.2c) For each word 𝑛 ∈ ℕ𝑉:  

                (3.2c.1) Draw a term feature value from Gaussian(𝜇𝑐𝑚,𝑣 , 𝜏𝑐𝑚,𝑣).  

It is worth noting that one can generate the resulting documents from the above procedure for multinomial and 

Bernoulli event models, but one can only generate the resulting feature vector representations for Gaussian event model.  

For convenience, let Φ = {�⃗� 𝑐}, {𝜑𝑐,𝑣}, {𝜇𝑐,𝑣 , 𝜏𝑐,𝑣} and Ψ = 𝛽 , {𝑎𝑣 , 𝑏𝑣}, {𝜇𝑣 , 𝜆𝑣 , 𝑎𝑣 , 𝑏𝑣} for multinomial, Bernoulli or 

Gaussian event model, respectively.  

4.1. Parameter estimation 

Given a training document set 𝒟, priors 𝛼  and Ψ, MAP estimates of 𝜗  and Φ can be calculated formally:  

 

Figure 3.  The graphical model representation for the Bayesian naïve Bayes classifier. In this figure, circle and double-circle 

variables indicate observed and latent variables, respectively. An arrow indicates a conditional dependency between variables, 

and stacked panes indicate a repeated sampling with the iteration number shown.  

(a) Multinomial Event Model (b) Bernoulli Event Model (c) Gaussian Event Model 
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{�̂� , Φ̂} = arg⁡max⁡𝑝(𝜗 , Φ|𝒟, 𝛼 , Ψ)

⁡ = arg⁡max⁡Pr(𝒟|𝜗 )⁡𝑝(𝜗 |𝛼 )×Pr(𝒟|Φ)𝑝(Φ|Ψ)⁡⁡

⁡ = arg⁡max⁡Dirichlet(𝜗 |ℓ⃗ + 𝛼 ) × arg⁡max⁡Pr(𝒟|Φ)𝑝(Φ|Ψ)

 (10) 

with ℓ⃗ = {ℓ𝑐}𝑐=1
𝐶 . Following the mode of Dirichlet distribution, MAP parameter estimates for 𝜗  can be expressed as 

follows. It is not difficult to see that (2) is equivalent to (11) when 𝛼𝑐 = 𝛼 + 1 (𝑐 ∈ ℕ𝐶).  

 �̂�𝑐 =
ℓ𝑐+𝛼𝑐−1

ℓ+∑ (𝛼𝑐′−1)𝐶
𝑐′=1

 (11) 

However, similar to NB classifier, in order to estimate Φ, one must assume an event model.  

(1) Multinomial event model 

 
{�⃗̂� 𝑐} = arg max Pr(𝒟|{�⃗� 𝑐})𝑝({�⃗� 𝑐}|𝛽 )

⁡ = arg max ∏ Dirichlet(�⃗� 𝑐|�⃗� 𝑐 + 𝛽 )𝐶
𝑐=1 ⁡⁡

 (12) 

with �⃗� 𝑐 = {𝑛𝑐
(𝑣)

}𝑣=1
𝑉 . Following the mode of Dirichlet distribution, MAP parameter estimates for {�⃗̂� 𝑐} can be expressed 

as follows.  

 �̂�𝑐,𝑣 =
𝑛𝑐

(𝑣)
+𝛽𝑣−1

𝑛𝑐
(∙)

+∑ (𝛽𝑣′−1)𝑉
𝑣′=1

 (13) 

It is easy to see that (4) is equivalent to (13) when 𝛽𝑣 = 𝛽 + 1 (𝑣 ∈ ℕ𝑉). 

(2) Bernoulli event model  

 
{�̂�𝑐,𝑣} = arg max Pr(𝒟|{𝜑𝑐,𝑣})𝑝({𝜑𝑐,𝑣}|𝑎, 𝑏)

⁡ = arg max ∏ ∏ Beta(𝜑𝑐,𝑣|𝑛𝑐
(𝑣)

+ a, ℓ𝑐 − 𝑛𝑐
(𝑣)

+ b)𝑉
𝑣=1

𝐶
𝑐=1 ⁡⁡

 (14) 

Following the mode of Beta distribution, MAP parameter estimates for {�̂�𝑐,𝑣} can be expressed as follows.  

 �̂�𝑐,𝑣 =
𝑛𝑐

(𝑣)
+𝑎−1

ℓ𝑐+𝑎+𝑏−2
 (15) 

Again, (6) is equivalent to (15) when 𝑎 = 𝑏 = 𝛽 + 1.  

(3) Gaussian event model 

 
{�̂�𝑐,𝑣 , �̂�𝑐,𝑣} = arg max Pr(𝒟|{𝜇𝑐,𝑣 , 𝜏𝑐,𝑣})𝑝({𝜇𝑐,𝑣 , 𝜏𝑐,𝑣}|𝜇𝑣 , 𝜆𝑣 , 𝑎𝑣 , 𝑏𝑣)

⁡ = arg max ∏ ∏ GaussianGamma(𝜇𝑐,𝑣, 𝜏𝑐,𝑣|𝜇𝑐,𝑣
𝒟 , 𝜆𝑐

𝒟 , 𝑎𝑐
𝒟 , 𝑏𝑐,𝑣

𝒟 )𝑉
𝑣=1

𝐶
𝑐=1 ⁡⁡

 (16) 

where  

 

𝜇𝑐,𝑣
𝒟 =

𝜆𝑣𝜇𝑣+ℓ𝑐�̅�𝑐,𝑣

𝜆𝑣+ℓ𝑐

𝜆𝑐,𝑣
𝒟 = 𝜆𝑣 + ℓ𝑐

𝑎𝑐
𝒟 = 𝑎𝑣 +

ℓ𝑐

2

𝑏𝑐,𝑣
𝒟 = 𝑏𝑣 +

1

2
(ℓ𝑐𝜎𝑐,𝑣

2 +
𝜆𝑣ℓ𝑐(�̅�𝑐,𝑣−𝜇𝑣)2

𝜆𝑣+ℓ𝑐
)

 (17) 
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with the mean �̅�𝑐,𝑣 and variance 𝜎𝑐,𝑣
2  of feature value for term v in documents with category c. Following the mode of 

GaussianGamma distribution [27][28], MAP parameter estimates can be expressed as follows.  

 

�̂�𝑐,𝑣 = 𝜇𝑐,𝑣
𝒟 =

𝜆𝑣𝜇𝑣+ℓ𝑐�̅�𝑐,𝑣

𝜆𝑣+ℓ𝑐

�̂�𝑐,𝑣 =
2𝑎𝑐

𝒟−1

2𝑏𝑐,𝑣
𝒟 =

2𝑎𝑣+ℓ𝑐−1

2𝑏𝑣+(ℓ𝑐�̅�𝑐,𝑣
2 +

𝜆𝑣ℓ𝑐(�̅�𝑐,𝑣−𝜇𝑣)2

𝜆𝑣+ℓ𝑐
+)

 (18) 

4.2. Decision-making procedure 

In order to assign a category c to a given document �⃗⃗�  with N word tokens, fully Bayesian inference should be used as 

follows.  

 

𝑐 = argmax Pr⁡(𝑐|�⃗⃗� , 𝒟, 𝛼 ,Ψ)

⁡ = argmax∬𝑝⁡(𝑐, �⃗⃗� , 𝜗 , Φ|𝒟, 𝛼 ,Ψ)𝑑𝜗 𝑑Φ

⁡ = argmax∬Pr⁡(𝑐|𝜗 )𝑝⁡(𝜗 |𝒟, 𝛼 )Pr⁡(�⃗⃗� |Φ)𝑝(Φ|𝒟,Ψ)𝑑𝜗 𝑑Φ

⁡ = arg⁡max⁡ ∫ Pr⁡(𝑐|𝜗 )𝑝⁡(𝜗 |𝒟, 𝛼 )𝑑𝜗 × arg⁡max ∫ Pr⁡(�⃗⃗� |Φ)𝑝(Φ|𝒟,Ψ)𝑑Φ

⁡ = argmax⁡ ∫ 𝜗𝑐 𝑝(𝜗 |𝒟, 𝛼 ) 𝑑𝜗 × arg⁡max ∫ Pr⁡(�⃗⃗� |Φ)𝑝(Φ|𝒟,Ψ)𝑑Φ

⁡ = argmax⁡
Γ(∑ 𝛼

𝑐′
𝐶
𝑐′=1

+ℓ)

∏ Γ(𝛼𝑐′+ℓ𝑐′)
𝐶
𝑐′=1

∏ Γ(𝛼
𝑐′+ℓ

𝑐′+𝐼(𝑐=𝑐′))𝐶
𝑐′=1

Γ(∑ 𝛼𝑐′
𝐶
𝑐′=1

+ℓ+1)
× arg⁡max ∫ Pr⁡(�⃗⃗� |Φ)𝑝(Φ|𝒟,Ψ)𝑑Φ

⁡ = argmax⁡
𝛼𝑐+ℓ𝑐

∑ 𝛼𝑐′+ℓ𝐶
𝑐′=1

× arg⁡max ∫Pr⁡(�⃗⃗� |Φ)𝑝(Φ|𝒟,Ψ)𝑑Φ

 (19) 

where () and I() is the Gamma and indicator function respectively. Again, an event model should be assumed in order 

to calculate the second term in (19).  

(1) Multinomial event model 

 

⁡ ∫ Pr⁡(�⃗⃗� |�⃗� 𝑐)𝑝(�⃗� 𝑐|𝒟, 𝛽 )𝑑�⃗� 𝑐

= ∫∏ 𝜑𝑐,𝑤𝑛
𝑁
𝑛=1 𝑝(�⃗� 𝑐|𝒟, 𝛽 )𝑑�⃗� 𝑐

=
Γ(∑ 𝛽𝑣

𝑉
𝑣=1 +𝑛𝑐)

∏ Γ(𝛽𝑣+𝑛𝑐
(𝑣)

)𝑉
𝑣=1

∏ Γ(𝛽𝑣+𝑛𝑐
(𝑣)

+𝑛(𝑣))𝑉
𝑣=1

Γ(∑ 𝛽𝑣
𝑉
𝑣=1 +𝑛𝑐+𝑁)

 (20) 

(2) Bernoulli event model 

 

⁡ ∫ Pr⁡(�⃗⃗� |�⃗� 𝑐)𝑝(�⃗� 𝑐|𝒟, 𝑎, 𝑏)𝑑�⃗� 𝑐
= ∏ ∫𝜑𝑐,𝑣

𝑤𝑣(1 − 𝜑𝑐,𝑣)
1−𝑤𝑣𝑝(𝜑𝑐,𝑣|𝒟, 𝑎, 𝑏)𝑑𝜑𝑐,𝑣

𝑉
𝑣=1

= ∏
(𝑛𝑐

(𝑣)
+𝑎)𝑤𝑣(ℓ𝑐−𝑛𝑐

(𝑣)
+𝑏)1−𝑤𝑣

ℓ𝑐+𝑎+𝑏

𝑉
𝑣=1

 (21) 

where �⃗� 𝑐 = {𝜑𝑐,𝑣}𝑣=1
𝑉 . If 𝑎 = 𝑏 = 𝛽 + 1, decision-making function for Bayesian NB classifier is equivalent to that of 

classical counterpart.  

(3) Gaussian event model 
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⁡ ∫ ∫ Pr⁡(�⃗⃗� |𝜇 𝑐, 𝜏 𝑐)𝑝(𝜇 𝑐, 𝜏 𝑐|𝒟, 𝜇𝑣, 𝜆𝑣 , 𝑎𝑣 , 𝑏𝑣)𝑑𝜇 𝑐𝑑𝜏 𝑐
= ∏ ∫∫𝒩(𝑤𝑣|𝜇𝑐,𝑣 , 𝜎𝑐,𝑣

2 )𝑝(𝜇𝑐,𝑣 , 𝜏𝑐,𝑣|𝒟, 𝜇𝑣, 𝜆𝑣 , 𝑎𝑣 , 𝑏𝑣)𝑑𝜇𝑐,𝑣𝑑𝜏𝑐,𝑣
𝑉
𝑣=1

= ∏

[
 
 
 
 
 
(𝑏𝑐,𝑣

𝒟 )𝑎𝑐
𝒟

√𝜆𝑐,𝑣
𝒟

Γ(𝑎𝑐
𝒟)

Γ(𝑎𝑐
𝒟+

1

2
)

(𝑏𝑐,𝑣
𝒟 +

𝜆𝑐,𝑣
𝒟 (𝑤𝑣−𝜇𝑐,𝑣

𝒟 )
2

2(𝜆𝑐,𝑣
𝒟 +1)

)

𝑎𝑐
𝒟+

1
2

√𝜆𝑐,𝑣
𝒟 +1

]
 
 
 
 
 

𝑉
𝑣=1

 (22) 

where 𝜇 𝑐 = {𝜇𝑐,𝑣}𝑣=1
𝑉  and 𝜏 𝑐 = {𝜏𝑐,𝑣}𝑣=1

𝑉 . 

5. Experiments and Discussions 

In this study, two benchmark dataset, 20 newsgroups and WebKB, are utilized to evaluate the performance. 20 

newsgroups was collected and originally used for text classification by Lang [29], which contains 18,821 non-empty 

documents evenly distributed across 20 categories, each representing a newsgroup. WebKB contains webpages collected 

from computer science departments of various universities by the World Wide Knowledge Base (Web->Kb) project of 

the CMU text learning group. As with [30], the categories “Department” and “Staff” were discarded because there were 

only a few pages from each university. The category “Other” was also discarded, because pages were very different 

among the examples for this class. After these discarding operations, 4,199 webpages are left in the end. The same pre-

processing and splitting with [4][21][31] are applied to these two datasets. The final vocabulary size for 20 newsgroups 

and WebKB are 70,216 and 7,770, respectively. Please refer to [31] for more details.  

 

Figure 4.  The performance of 10-fold cross validation with log2 in term of macro-average F1 score on 20 newsgroups dataset: 

(a) is for classical NB classifier, (c) and (d) are for Bayesian NB classifier. Since Bayesian NB classifier with Bernoulli event model 

is equivalent to that of classical counterpart (a=b=β+1), (b) is for classical and Bayesian NB classifiers.   

(a) Multinomial Event Model (classical NB classifier) (b) Bernoulli Event Model 

(c) Multinomial Event Model (Bayesian NB classifier) (d) Gaussian Event Model (Bayesian NB classifier) 
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In order to generate continuous feature vector representations for Gaussian event model, we then do a kind of 

TFIDF transformation as follows, and normalize each document to unit length [32].  

 TF × IDF𝑚,𝑣 = ln⁡(1 + TF𝑚,𝑣) × log2(
ℓ

DF𝑣
) (23) 

To evaluate the performance of resulting classifiers, three standard measures for binary classification, precision, 

recall and F score, are utilized in this study. Precision, recall and F score ( = 1 in this study) are defined formally as:  

 

P =
𝑇𝑃

𝑇𝑃+𝐹𝑃

R =
𝑇𝑃

𝑇𝑃+𝐹𝑁

F𝜌 = (1 + 𝜌2)
P×R

𝜌2P+R

 (24) 

Here, TP (true positive) is the number of the correct positive predictions, FP (false positive) is the number of 

incorrect positive predictions, and FN (false negative) is the number of incorrect negative predictions. 

In classical NB classifier,  is fixed to 1, and  is tuned for multinomial and Bernoulli event models. It is not needed 

to tune parameters for Gaussian event model. For simplicity, the symmetric Dirichlet priors are used in Bayesian NB 

classifier, where c = 2 (𝑐 ∈ ℕ𝐶),  v (𝑣 ∈ ℕ𝑉) or   a = b is tuned for multinomial and Bernoulli event models. As 

for Gaussian event model, 𝜇𝑣 (𝑣 ∈ ℕ𝑉) is fixed to sample mean, 𝜆𝑣 (𝑣 ∈ ℕ𝑉) is fixed to 1, and 𝛽 ≡ 𝑎𝑣 = 𝑏𝑣  (𝑣 ∈ ℕ𝑉) is 

tuned. In order to identify proper parameters, the grid search [33] with 10-fold cross validation is adopted. Let log2  

 

Figure 5.  The performance of 10-fold cross validation with log2 in term of macro-average F1 score on WebKB dataset: (a) is 

for classical NB classifier, (c) and (d) are for Bayesian NB classifier. Since Bayesian NB classifier with Bernoulli event model is 

equivalent to that of classical counterpart (a=b=β+1), (b) is for classical and Bayesian NB classifiers.   

(a) Multinomial Event Model (classical NB classifier) (b) Bernoulli Event Model 

(c) Multinomial Event Model (Bayesian NB classifier) (d) Gaussian Event Model (Bayesian NB classifier) 
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{-15, -14, …, 0} for NB classifier, log2  {-15, -14, …, 1} and log2  {-20, -19, …, -4} for multinomial and 

Gaussian event model in Bayesian NB classifier, respectively. The performance on 20 newsgroups and WebKB in terms 

of macro-average F1 score with  is reported in Figure 4 and Figure 5, respectively. From Figure 4 and Figure 5, it is not 

difficult to see that the performance is sensitive to the resulting parameters. Therefore, it is necessary for users to 

identify proper parameters in advance with grid search or other similar methods.  

Table 1.  Experimental Results on 20 newsgroups dataset in term of precision (%), recall (%) and F1 score (%).  

ID 

Multinomial Event Model Bernoulli Event 
Model 

Gaussian Event Model 

Classical Bayesian Classical Bayesian 

P R F1 P R F1 P R F1 P R F1 P R F1 

1 80.72 77.43 79.04 76.02 81.50 78.67 74.56 79.00 76.71 75.65 73.04 74.32 75.15 78.68 76.88 

2 72.93 76.86 74.84 68.64 80.46 74.08 58.96 70.18 64.08 57.51 58.10 57.80 76.25 58.61 66.28 

3 78.27 66.75 72.05 72.08 72.08 72.08 64.64 59.39 61.90 58.42 44.92 50.79 54.38 66.24 59.73 

4 66.06 73.98 69.80 71.68 71.68 71.68 61.61 66.33 63.88 58.63 54.59 56.54 47.84 67.86 56.12 

5 80.05 81.30 80.67 75.00 83.38 78.97 65.53 74.55 69.74 68.12 61.04 64.38 52.06 78.70 62.67 

6 85.79 80.10 82.85 92.93 70.41 80.12 84.31 69.90 76.43 71.92 69.90 70.89 85.06 66.84 74.86 

7 81.79 72.56 76.90 81.12 78.21 79.63 56.80 78.21 65.80 62.91 48.72 54.91 82.76 43.08 56.66 

8 86.96 91.14 89.00 87.53 92.41 89.90 83.12 83.54 83.33 80.46 79.24 79.85 77.73 84.81 81.11 

9 90.31 95.98 93.06 88.84 95.98 92.27 87.09 93.22 90.05 82.97 86.93 84.91 80.43 92.96 86.25 

10 97.42 95.21 96.31 97.39 93.95 95.64 93.35 88.41 90.82 89.89 82.87 86.24 73.32 96.22 83.22 

11 96.77 97.74 97.26 97.46 96.24 96.85 97.61 91.98 94.71 86.79 92.23 89.43 93.48 93.48 93.48 

12 87.01 94.70 90.69 89.47 94.44 91.89 84.26 87.88 86.03 73.90 85.10 79.11 75.21 91.16 82.42 

13 77.53 72.01 74.67 79.49 72.01 75.57 71.07 64.38 67.56 68.29 57.00 62.14 71.47 66.92 69.12 

14 90.38 83.08 86.58 91.44 83.59 87.34 86.13 75.25 80.32 61.20 77.27 68.30 95.72 62.12 75.34 

15 86.10 89.59 87.81 89.54 89.09 89.31 85.26 82.23 83.72 69.11 81.22 74.68 89.37 78.93 83.83 

16 78.65 93.47 85.42 87.20 90.70 88.92 84.50 84.92 84.71 75.40 83.92 79.43 70.88 92.96 80.43 

17 72.45 91.76 80.97 71.71 91.21 80.29 74.38 82.14 78.07 69.05 71.70 70.35 68.71 86.26 76.49 

18 94.78 91.76 93.24 96.37 84.84 90.24 95.61 81.12 87.77 79.21 85.11 82.05 98.71 81.65 89.37 

19 75.70 61.29 67.74 72.11 58.39 64.53 71.84 56.77 63.42 62.42 63.23 62.82 89.40 43.55 58.57 

20 80.21 59.76 68.49 65.95 60.96 63.35 72.46 59.76 65.50 60.24 59.76 60.00 83.61 20.32 32.69 

avg. 82.99 82.32 82.37 82.60 82.08 82.07 77.65 76.46 76.73 70.60 70.79 70.45 77.08 72.57 72.28 

To make it clear, category names corresponding to the first column are listed as follows: 1-alt.atheism, 2-comp.graphics, 3-

comp.os.ms-windows.misc, 4-comp.sys.ibm.pc.hardware, 5-comp.sys.mac.hardware, 6-comp.windows.x, 7-misc.forsale, 8-rec.autos, 

9-rec.motorcycles, 10-rec.sport.baseball, 11-rec.sport.hockey, 12-sci.crypt, 13-sci.electronics, 14-sci.med, 15-sci.space, 16-

soc.religion.christian, 17-talk.politics.guns, 18-talk.politics.mideast, 19-talk.politics.misc, 20-talk.religion.misc.  

 

Table 2.  Experimental Results on WebKB dataset in term of precision (%), recall (%) and F1 score (%).  

ID 

Multinomial Event Model Bernoulli Event 
Model 

Gaussian Event Model 

Classical Bayesian Classical Bayesian 

P R F1 P R F1 P R F1 P R F1 P R F1 

1 87.00 88.60 87.80 83.45 88.05 85.69 74.51 84.38 79.14 73.89 58.27 65.16 88.89 70.59 78.69 

2 92.58 92.58 92.58 94.39 92.26 93.31 97.67 81.29 88.73 73.31 70.00 71.62 70.45 96.13 81.31 

3 76.28 83.42 79.69 81.82 72.19 76.70 71.39 72.73 72.05 46.37 63.10 53.45 67.21 76.74 71.66 

4 81.30 59.52 68.73 68.78 77.38 72.83 75.89 63.69 69.26 28.40 27.38 27.88 61.40 41.67 49.65 

avg. 84.29 81.03 82.20 82.11 82.47 82.13 79.87 75.52 77.29 55.49 54.69 54.53 71.99 71.28 70.33 

To make it clear, category names corresponding to the first column are listed as follows: 1-student, 2-course, 3-faculty, 4-project.  

With the tuned parameters in Figure 4 and Figure 5, the experimental results on test data are reported in Table 1 and 

Table 2 in term of precision, recall and F1 score. Table 3 shows two-tailed significance with 95% confidence interval by 
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paired-samples t-test [34]. From Table 1 and Table 2, one can see that the performance of Bayesian NB classifier with 

multinomial event model is similar to that of classical counterpart, but Bayesian NB classifier with Gaussian event 

model is obviously better than classical counterpart. Table 3 also illustrates that there is no statistically significant 

difference between Bayesian and classical NB classifiers with multinomial event model, but as for Gaussian event 

model, the difference between Bayesian and classical NB classifiers is statistical significant, especially for WebKB 

dataset. This observation is not consistent with that of Rennie [21]. What’s more, NB classifier with multinomial event 

model outperforms that with Bernoulli event model, and NB classifier with Bernoulli event model outperforms that with 

Gaussian event model.  

Table 3.  Two-Tailed Statistical Significance with 95% Confidence Interval by Paired-Samples T-Test.  

Multinomial Event Model Gaussian Event Model 

20 newsgroups WebKB 20 newsgroups WebKB 

P R F1 P R F1 P R F1 P R F1 

0.735 0.770 0.531 0.512 0.773 0.959 0.051 0.563 0.290 0.046 0.048 0.002 

 

6. Conclusions 

Text classification is a supporting technology in several information processing tasks, including controlled vocabulary 

indexing, content filtering (spam, pornography, etc.), information security, and others. Instead of manually classifying 

documents, many machine learning algorithms are trained to automatically classify documents based on annotated 

training documents. The naïve Bayes (NB) classifier is often used as the baseline in text classification. However, 

classical NB classifiers with multinomial, Bernoulli and Gaussian event model are not fully Bayesian. 

Inspired by the success of Bayesian counterparts of many classical methods, such as HMM, PCA, SVM and MDS, 

this study proposes three Bayesian counterpart classifiers, where it turns out that classical NB classifier with Bernoulli 

event model is equivalent to Bayesian counterpart. As a matter of fact, one can easily generalize the approach in the 

work to construct alternative NB classifiers with exponential family [35] event model. Finally, experimental results on 

20 newsgroups and WebKB data sets show that Bayesian NB classifier with multinomial event model performs similarly 

with classical counterpart, but Bayesian NB classifier with Gaussian event model is obviously better than classical 

counterpart. What’s more, NB classifier with multinomial event model outperforms that with Bernoulli event model, 

and NB classifier with Gaussian event model comes next to that with Gaussian event model.  
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